Loading…

Main Injective Rings

We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize Q...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2011-03, Vol.39 (4), p.1226-1233
Main Authors: Raggi, Francisco, Ríos, José, Rincón, Hugo, Fernández-Alonso, Rogelio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3
cites cdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3
container_end_page 1233
container_issue 4
container_start_page 1226
container_title Communications in algebra
container_volume 39
creator Raggi, Francisco
Ríos, José
Rincón, Hugo
Fernández-Alonso, Rogelio
description We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective.
doi_str_mv 10.1080/00927871003639345
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_901645734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901645734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs7N-66czX6Xt5kkoAbKX5BRRBdhzSTSMp0piZTtf_elror2NVd3HPu4jJ2gXCFoOAaQHOpJAJQRZpKccAGKIgXJXJxyAabvlgD_Jid5DwDQCEVH7DzZxvb0VM7866PX370GtuPfMqOgm2yP_vLIXu_v3sbPxaTl4en8e2kcCVCX9RQEQYUXJaeAL3mDmqwIDUiEYHkloC7IJRWU69hilOhuUJES8HVNQ3Z5XZ3kbrPpc-9mcfsfNPY1nfLbDRgVQpJ5V5S6Qo3HF-TuCVd6nJOPphFinObVgbBbK4yO1etnZutE9vQpbn97lJTm96umi6FZFsXs6H_dLlX37FM_9PTLwPjfMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896173432</pqid></control><display><type>article</type><title>Main Injective Rings</title><source>Taylor and Francis Science and Technology Collection</source><creator>Raggi, Francisco ; Ríos, José ; Rincón, Hugo ; Fernández-Alonso, Rogelio</creator><creatorcontrib>Raggi, Francisco ; Ríos, José ; Rincón, Hugo ; Fernández-Alonso, Rogelio</creatorcontrib><description>We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927871003639345</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Algebra ; Main injective modules ; Main injective rings ; Modules ; Preradicals ; QF-rings</subject><ispartof>Communications in algebra, 2011-03, Vol.39 (4), p.1226-1233</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</citedby><cites>FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Raggi, Francisco</creatorcontrib><creatorcontrib>Ríos, José</creatorcontrib><creatorcontrib>Rincón, Hugo</creatorcontrib><creatorcontrib>Fernández-Alonso, Rogelio</creatorcontrib><title>Main Injective Rings</title><title>Communications in algebra</title><description>We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective.</description><subject>Algebra</subject><subject>Main injective modules</subject><subject>Main injective rings</subject><subject>Modules</subject><subject>Preradicals</subject><subject>QF-rings</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs7N-66czX6Xt5kkoAbKX5BRRBdhzSTSMp0piZTtf_elror2NVd3HPu4jJ2gXCFoOAaQHOpJAJQRZpKccAGKIgXJXJxyAabvlgD_Jid5DwDQCEVH7DzZxvb0VM7866PX370GtuPfMqOgm2yP_vLIXu_v3sbPxaTl4en8e2kcCVCX9RQEQYUXJaeAL3mDmqwIDUiEYHkloC7IJRWU69hilOhuUJES8HVNQ3Z5XZ3kbrPpc-9mcfsfNPY1nfLbDRgVQpJ5V5S6Qo3HF-TuCVd6nJOPphFinObVgbBbK4yO1etnZutE9vQpbn97lJTm96umi6FZFsXs6H_dLlX37FM_9PTLwPjfMI</recordid><startdate>20110321</startdate><enddate>20110321</enddate><creator>Raggi, Francisco</creator><creator>Ríos, José</creator><creator>Rincón, Hugo</creator><creator>Fernández-Alonso, Rogelio</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110321</creationdate><title>Main Injective Rings</title><author>Raggi, Francisco ; Ríos, José ; Rincón, Hugo ; Fernández-Alonso, Rogelio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Main injective modules</topic><topic>Main injective rings</topic><topic>Modules</topic><topic>Preradicals</topic><topic>QF-rings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raggi, Francisco</creatorcontrib><creatorcontrib>Ríos, José</creatorcontrib><creatorcontrib>Rincón, Hugo</creatorcontrib><creatorcontrib>Fernández-Alonso, Rogelio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raggi, Francisco</au><au>Ríos, José</au><au>Rincón, Hugo</au><au>Fernández-Alonso, Rogelio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Main Injective Rings</atitle><jtitle>Communications in algebra</jtitle><date>2011-03-21</date><risdate>2011</risdate><volume>39</volume><issue>4</issue><spage>1226</spage><epage>1233</epage><pages>1226-1233</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00927871003639345</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2011-03, Vol.39 (4), p.1226-1233
issn 0092-7872
1532-4125
language eng
recordid cdi_proquest_miscellaneous_901645734
source Taylor and Francis Science and Technology Collection
subjects Algebra
Main injective modules
Main injective rings
Modules
Preradicals
QF-rings
title Main Injective Rings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Main%20Injective%20Rings&rft.jtitle=Communications%20in%20algebra&rft.au=Raggi,%20Francisco&rft.date=2011-03-21&rft.volume=39&rft.issue=4&rft.spage=1226&rft.epage=1233&rft.pages=1226-1233&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927871003639345&rft_dat=%3Cproquest_infor%3E901645734%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896173432&rft_id=info:pmid/&rfr_iscdi=true