Loading…
Main Injective Rings
We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize Q...
Saved in:
Published in: | Communications in algebra 2011-03, Vol.39 (4), p.1226-1233 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3 |
container_end_page | 1233 |
container_issue | 4 |
container_start_page | 1226 |
container_title | Communications in algebra |
container_volume | 39 |
creator | Raggi, Francisco Ríos, José Rincón, Hugo Fernández-Alonso, Rogelio |
description | We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective. |
doi_str_mv | 10.1080/00927871003639345 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_901645734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901645734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs7N-66czX6Xt5kkoAbKX5BRRBdhzSTSMp0piZTtf_elror2NVd3HPu4jJ2gXCFoOAaQHOpJAJQRZpKccAGKIgXJXJxyAabvlgD_Jid5DwDQCEVH7DzZxvb0VM7866PX370GtuPfMqOgm2yP_vLIXu_v3sbPxaTl4en8e2kcCVCX9RQEQYUXJaeAL3mDmqwIDUiEYHkloC7IJRWU69hilOhuUJES8HVNQ3Z5XZ3kbrPpc-9mcfsfNPY1nfLbDRgVQpJ5V5S6Qo3HF-TuCVd6nJOPphFinObVgbBbK4yO1etnZutE9vQpbn97lJTm96umi6FZFsXs6H_dLlX37FM_9PTLwPjfMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896173432</pqid></control><display><type>article</type><title>Main Injective Rings</title><source>Taylor and Francis Science and Technology Collection</source><creator>Raggi, Francisco ; Ríos, José ; Rincón, Hugo ; Fernández-Alonso, Rogelio</creator><creatorcontrib>Raggi, Francisco ; Ríos, José ; Rincón, Hugo ; Fernández-Alonso, Rogelio</creatorcontrib><description>We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927871003639345</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Algebra ; Main injective modules ; Main injective rings ; Modules ; Preradicals ; QF-rings</subject><ispartof>Communications in algebra, 2011-03, Vol.39 (4), p.1226-1233</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</citedby><cites>FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Raggi, Francisco</creatorcontrib><creatorcontrib>Ríos, José</creatorcontrib><creatorcontrib>Rincón, Hugo</creatorcontrib><creatorcontrib>Fernández-Alonso, Rogelio</creatorcontrib><title>Main Injective Rings</title><title>Communications in algebra</title><description>We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective.</description><subject>Algebra</subject><subject>Main injective modules</subject><subject>Main injective rings</subject><subject>Modules</subject><subject>Preradicals</subject><subject>QF-rings</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs7N-66czX6Xt5kkoAbKX5BRRBdhzSTSMp0piZTtf_elror2NVd3HPu4jJ2gXCFoOAaQHOpJAJQRZpKccAGKIgXJXJxyAabvlgD_Jid5DwDQCEVH7DzZxvb0VM7866PX370GtuPfMqOgm2yP_vLIXu_v3sbPxaTl4en8e2kcCVCX9RQEQYUXJaeAL3mDmqwIDUiEYHkloC7IJRWU69hilOhuUJES8HVNQ3Z5XZ3kbrPpc-9mcfsfNPY1nfLbDRgVQpJ5V5S6Qo3HF-TuCVd6nJOPphFinObVgbBbK4yO1etnZutE9vQpbn97lJTm96umi6FZFsXs6H_dLlX37FM_9PTLwPjfMI</recordid><startdate>20110321</startdate><enddate>20110321</enddate><creator>Raggi, Francisco</creator><creator>Ríos, José</creator><creator>Rincón, Hugo</creator><creator>Fernández-Alonso, Rogelio</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110321</creationdate><title>Main Injective Rings</title><author>Raggi, Francisco ; Ríos, José ; Rincón, Hugo ; Fernández-Alonso, Rogelio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Main injective modules</topic><topic>Main injective rings</topic><topic>Modules</topic><topic>Preradicals</topic><topic>QF-rings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raggi, Francisco</creatorcontrib><creatorcontrib>Ríos, José</creatorcontrib><creatorcontrib>Rincón, Hugo</creatorcontrib><creatorcontrib>Fernández-Alonso, Rogelio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raggi, Francisco</au><au>Ríos, José</au><au>Rincón, Hugo</au><au>Fernández-Alonso, Rogelio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Main Injective Rings</atitle><jtitle>Communications in algebra</jtitle><date>2011-03-21</date><risdate>2011</risdate><volume>39</volume><issue>4</issue><spage>1226</spage><epage>1233</epage><pages>1226-1233</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We refer to those injective modules that determine every left exact preradical and that we called main injective modules in a preceding article, and we consider left main injective rings, which as left modules are main injective modules. We prove some properties of these rings, and we characterize QF-rings as those rings which are left and right main injective.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/00927871003639345</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-7872 |
ispartof | Communications in algebra, 2011-03, Vol.39 (4), p.1226-1233 |
issn | 0092-7872 1532-4125 |
language | eng |
recordid | cdi_proquest_miscellaneous_901645734 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algebra Main injective modules Main injective rings Modules Preradicals QF-rings |
title | Main Injective Rings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Main%20Injective%20Rings&rft.jtitle=Communications%20in%20algebra&rft.au=Raggi,%20Francisco&rft.date=2011-03-21&rft.volume=39&rft.issue=4&rft.spage=1226&rft.epage=1233&rft.pages=1226-1233&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927871003639345&rft_dat=%3Cproquest_infor%3E901645734%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-d0631f15274e301e92c0d0a07911333072a302cf5898be90b1b5928111a3fcdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896173432&rft_id=info:pmid/&rfr_iscdi=true |