Loading…
Guaranteed cost control of uncertain differential linear repetitive processes
This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is boun...
Saved in:
Published in: | IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2004-11, Vol.51 (11), p.629-634 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793 |
container_end_page | 634 |
container_issue | 11 |
container_start_page | 629 |
container_title | IEEE transactions on circuits and systems. 2, Analog and digital signal processing |
container_volume | 51 |
creator | Paszke, W. Galkowski, K. Rogers, E. Owens, D.H. |
description | This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function. |
doi_str_mv | 10.1109/TCSII.2004.836057 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901647319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1356179</ieee_id><sourcerecordid>901647319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKs_QLwsHvS0Ndlk83GUorVQ8WA9hzQ7gZRttiZZwX_vrhUED15m5vDMDC8PQpcEzwjB6m49f10uZxXGbCYpx7U4QhNS17KkQpHjcWaqFIKJU3SW0hbjSmFaTdDzojfRhAzQFLZLeSghx64tOlf0wULMxoei8c5BhJC9aYvWBzCxiLCH7LP_gGIfOwspQTpHJ860CS5--hS9PT6s50_l6mWxnN-vSksVzyUIyYRw1PGGGyUMMMkwrg0FzEhdCbfhwPlGVrSxqnG4ViAltqzhtqaNUHSKbg93h8_vPaSsdz5ZaFsToOuTVphwJigZyZt_yUpSQhQbwes_4LbrYxhSaFVhKbmgI0QOkI1dShGc3ke_M_FTE6xHD_rbgx496IOHYefqsOMB4JenNSdDki_xkYQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920886739</pqid></control><display><type>article</type><title>Guaranteed cost control of uncertain differential linear repetitive processes</title><source>IEEE Xplore (Online service)</source><creator>Paszke, W. ; Galkowski, K. ; Rogers, E. ; Owens, D.H.</creator><creatorcontrib>Paszke, W. ; Galkowski, K. ; Rogers, E. ; Owens, D.H.</creatorcontrib><description>This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function.</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2004.836057</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Circuits ; Control systems ; Cost function ; Design engineering ; Differential repetitive processes ; guaranteed cost control ; Law ; Linear matrix inequalities ; Linear systems ; Marketing ; Optimal control ; Optimization ; Process control ; Stability ; Symmetric matrices ; two-dimensional (2-D) systems ; Uncertainty</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2004-11, Vol.51 (11), p.629-634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</citedby><cites>FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1356179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Paszke, W.</creatorcontrib><creatorcontrib>Galkowski, K.</creatorcontrib><creatorcontrib>Rogers, E.</creatorcontrib><creatorcontrib>Owens, D.H.</creatorcontrib><title>Guaranteed cost control of uncertain differential linear repetitive processes</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Circuits</subject><subject>Control systems</subject><subject>Cost function</subject><subject>Design engineering</subject><subject>Differential repetitive processes</subject><subject>guaranteed cost control</subject><subject>Law</subject><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Marketing</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Process control</subject><subject>Stability</subject><subject>Symmetric matrices</subject><subject>two-dimensional (2-D) systems</subject><subject>Uncertainty</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhoMoWKs_QLwsHvS0Ndlk83GUorVQ8WA9hzQ7gZRttiZZwX_vrhUED15m5vDMDC8PQpcEzwjB6m49f10uZxXGbCYpx7U4QhNS17KkQpHjcWaqFIKJU3SW0hbjSmFaTdDzojfRhAzQFLZLeSghx64tOlf0wULMxoei8c5BhJC9aYvWBzCxiLCH7LP_gGIfOwspQTpHJ860CS5--hS9PT6s50_l6mWxnN-vSksVzyUIyYRw1PGGGyUMMMkwrg0FzEhdCbfhwPlGVrSxqnG4ViAltqzhtqaNUHSKbg93h8_vPaSsdz5ZaFsToOuTVphwJigZyZt_yUpSQhQbwes_4LbrYxhSaFVhKbmgI0QOkI1dShGc3ke_M_FTE6xHD_rbgx496IOHYefqsOMB4JenNSdDki_xkYQk</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Paszke, W.</creator><creator>Galkowski, K.</creator><creator>Rogers, E.</creator><creator>Owens, D.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20041101</creationdate><title>Guaranteed cost control of uncertain differential linear repetitive processes</title><author>Paszke, W. ; Galkowski, K. ; Rogers, E. ; Owens, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Circuits</topic><topic>Control systems</topic><topic>Cost function</topic><topic>Design engineering</topic><topic>Differential repetitive processes</topic><topic>guaranteed cost control</topic><topic>Law</topic><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Marketing</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Process control</topic><topic>Stability</topic><topic>Symmetric matrices</topic><topic>two-dimensional (2-D) systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paszke, W.</creatorcontrib><creatorcontrib>Galkowski, K.</creatorcontrib><creatorcontrib>Rogers, E.</creatorcontrib><creatorcontrib>Owens, D.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paszke, W.</au><au>Galkowski, K.</au><au>Rogers, E.</au><au>Owens, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guaranteed cost control of uncertain differential linear repetitive processes</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2004-11-01</date><risdate>2004</risdate><volume>51</volume><issue>11</issue><spage>629</spage><epage>634</epage><pages>629-634</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2004.836057</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2004-11, Vol.51 (11), p.629-634 |
issn | 1549-7747 1057-7130 1558-3791 |
language | eng |
recordid | cdi_proquest_miscellaneous_901647319 |
source | IEEE Xplore (Online service) |
subjects | Algorithm design and analysis Algorithms Circuits Control systems Cost function Design engineering Differential repetitive processes guaranteed cost control Law Linear matrix inequalities Linear systems Marketing Optimal control Optimization Process control Stability Symmetric matrices two-dimensional (2-D) systems Uncertainty |
title | Guaranteed cost control of uncertain differential linear repetitive processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guaranteed%20cost%20control%20of%20uncertain%20differential%20linear%20repetitive%20processes&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Paszke,%20W.&rft.date=2004-11-01&rft.volume=51&rft.issue=11&rft.spage=629&rft.epage=634&rft.pages=629-634&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2004.836057&rft_dat=%3Cproquest_cross%3E901647319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920886739&rft_id=info:pmid/&rft_ieee_id=1356179&rfr_iscdi=true |