Loading…

Guaranteed cost control of uncertain differential linear repetitive processes

This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is boun...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2004-11, Vol.51 (11), p.629-634
Main Authors: Paszke, W., Galkowski, K., Rogers, E., Owens, D.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793
cites cdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793
container_end_page 634
container_issue 11
container_start_page 629
container_title IEEE transactions on circuits and systems. 2, Analog and digital signal processing
container_volume 51
creator Paszke, W.
Galkowski, K.
Rogers, E.
Owens, D.H.
description This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function.
doi_str_mv 10.1109/TCSII.2004.836057
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901647319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1356179</ieee_id><sourcerecordid>901647319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKs_QLwsHvS0Ndlk83GUorVQ8WA9hzQ7gZRttiZZwX_vrhUED15m5vDMDC8PQpcEzwjB6m49f10uZxXGbCYpx7U4QhNS17KkQpHjcWaqFIKJU3SW0hbjSmFaTdDzojfRhAzQFLZLeSghx64tOlf0wULMxoei8c5BhJC9aYvWBzCxiLCH7LP_gGIfOwspQTpHJ860CS5--hS9PT6s50_l6mWxnN-vSksVzyUIyYRw1PGGGyUMMMkwrg0FzEhdCbfhwPlGVrSxqnG4ViAltqzhtqaNUHSKbg93h8_vPaSsdz5ZaFsToOuTVphwJigZyZt_yUpSQhQbwes_4LbrYxhSaFVhKbmgI0QOkI1dShGc3ke_M_FTE6xHD_rbgx496IOHYefqsOMB4JenNSdDki_xkYQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920886739</pqid></control><display><type>article</type><title>Guaranteed cost control of uncertain differential linear repetitive processes</title><source>IEEE Xplore (Online service)</source><creator>Paszke, W. ; Galkowski, K. ; Rogers, E. ; Owens, D.H.</creator><creatorcontrib>Paszke, W. ; Galkowski, K. ; Rogers, E. ; Owens, D.H.</creatorcontrib><description>This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function.</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2004.836057</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Circuits ; Control systems ; Cost function ; Design engineering ; Differential repetitive processes ; guaranteed cost control ; Law ; Linear matrix inequalities ; Linear systems ; Marketing ; Optimal control ; Optimization ; Process control ; Stability ; Symmetric matrices ; two-dimensional (2-D) systems ; Uncertainty</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2004-11, Vol.51 (11), p.629-634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</citedby><cites>FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1356179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Paszke, W.</creatorcontrib><creatorcontrib>Galkowski, K.</creatorcontrib><creatorcontrib>Rogers, E.</creatorcontrib><creatorcontrib>Owens, D.H.</creatorcontrib><title>Guaranteed cost control of uncertain differential linear repetitive processes</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Circuits</subject><subject>Control systems</subject><subject>Cost function</subject><subject>Design engineering</subject><subject>Differential repetitive processes</subject><subject>guaranteed cost control</subject><subject>Law</subject><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Marketing</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Process control</subject><subject>Stability</subject><subject>Symmetric matrices</subject><subject>two-dimensional (2-D) systems</subject><subject>Uncertainty</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhoMoWKs_QLwsHvS0Ndlk83GUorVQ8WA9hzQ7gZRttiZZwX_vrhUED15m5vDMDC8PQpcEzwjB6m49f10uZxXGbCYpx7U4QhNS17KkQpHjcWaqFIKJU3SW0hbjSmFaTdDzojfRhAzQFLZLeSghx64tOlf0wULMxoei8c5BhJC9aYvWBzCxiLCH7LP_gGIfOwspQTpHJ860CS5--hS9PT6s50_l6mWxnN-vSksVzyUIyYRw1PGGGyUMMMkwrg0FzEhdCbfhwPlGVrSxqnG4ViAltqzhtqaNUHSKbg93h8_vPaSsdz5ZaFsToOuTVphwJigZyZt_yUpSQhQbwes_4LbrYxhSaFVhKbmgI0QOkI1dShGc3ke_M_FTE6xHD_rbgx496IOHYefqsOMB4JenNSdDki_xkYQk</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Paszke, W.</creator><creator>Galkowski, K.</creator><creator>Rogers, E.</creator><creator>Owens, D.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20041101</creationdate><title>Guaranteed cost control of uncertain differential linear repetitive processes</title><author>Paszke, W. ; Galkowski, K. ; Rogers, E. ; Owens, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Circuits</topic><topic>Control systems</topic><topic>Cost function</topic><topic>Design engineering</topic><topic>Differential repetitive processes</topic><topic>guaranteed cost control</topic><topic>Law</topic><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Marketing</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Process control</topic><topic>Stability</topic><topic>Symmetric matrices</topic><topic>two-dimensional (2-D) systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paszke, W.</creatorcontrib><creatorcontrib>Galkowski, K.</creatorcontrib><creatorcontrib>Rogers, E.</creatorcontrib><creatorcontrib>Owens, D.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paszke, W.</au><au>Galkowski, K.</au><au>Rogers, E.</au><au>Owens, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guaranteed cost control of uncertain differential linear repetitive processes</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2004-11-01</date><risdate>2004</risdate><volume>51</volume><issue>11</issue><spage>629</spage><epage>634</epage><pages>629-634</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This paper deals with the problem of designing a control law for differential linear repetitive processes based on minimizing a cost function in the presence of uncertainties in the process model. This control law results in a closed-loop stable process with an associated cost function which is bounded for all admissible uncertainties. Moreover, an optimization algorithm is developed to design this law such that it minimizes the upperbound of the closed-loop cost function.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2004.836057</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2004-11, Vol.51 (11), p.629-634
issn 1549-7747
1057-7130
1558-3791
language eng
recordid cdi_proquest_miscellaneous_901647319
source IEEE Xplore (Online service)
subjects Algorithm design and analysis
Algorithms
Circuits
Control systems
Cost function
Design engineering
Differential repetitive processes
guaranteed cost control
Law
Linear matrix inequalities
Linear systems
Marketing
Optimal control
Optimization
Process control
Stability
Symmetric matrices
two-dimensional (2-D) systems
Uncertainty
title Guaranteed cost control of uncertain differential linear repetitive processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guaranteed%20cost%20control%20of%20uncertain%20differential%20linear%20repetitive%20processes&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Paszke,%20W.&rft.date=2004-11-01&rft.volume=51&rft.issue=11&rft.spage=629&rft.epage=634&rft.pages=629-634&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2004.836057&rft_dat=%3Cproquest_cross%3E901647319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-e78477f3f6d6a97ae484005a3e041527fb6e66b823dc9df059e880c4d6c53d793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920886739&rft_id=info:pmid/&rft_ieee_id=1356179&rfr_iscdi=true