Loading…

A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results

This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, princ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2011-07, Vol.26 (3), p.1999-2008
Main Authors: JIANG, Joe-Air, CHUANG, Cheng-Long, WANG, Yung-Chung, HUNG, Chih-Hung, WANG, Jiing-Yi, LEE, Chien-Hsing, HSIAO, Ying-Tung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3
cites cdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3
container_end_page 2008
container_issue 3
container_start_page 1999
container_title IEEE transactions on power delivery
container_volume 26
creator JIANG, Joe-Air
CHUANG, Cheng-Long
WANG, Yung-Chung
HUNG, Chih-Hung
WANG, Jiing-Yi
LEE, Chien-Hsing
HSIAO, Ying-Tung
description This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements.
doi_str_mv 10.1109/TPWRD.2011.2141158
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901652054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5779724</ieee_id><sourcerecordid>2385778761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</originalsourceid><addsrcrecordid>eNpdkF9LwzAUxYMoOKdfQF-CIL7YmaRpk_g2NqeDgSITH0Oa3kC1f2bSIvv2duvwwafLufd3D4eD0CUlE0qJul-_frzNJ4xQOmGUU5rIIzSiKhYRZ0QeoxGRMomkEuIUnYXwSQjhRJERqqb4eZv5IscLbyr4afwXdo3HC9OVLZ5DC7YtmvoOz0oTQuEKawZt6hyvmkFFr8a3eLl8wMtqU0IFdbvf76E1hBa_Qej9wjk6caYMcHGYY_S-eFzPnqPVy9NyNl1FNk7SNhIy5jlxXGROZi4TqeXcOqsEoUylqVFZJoRUQIETG6sMhFU55EymlErrIB6j28F345vvrg-gqyJYKEtTQ9MFrQhNE0YS3pPX_8jPpvN1H05LEUtOeax6iA2Q9U0IHpze-KIyfqsp0bv-9b5_vetfH_rvn24OziZYUzpvaluEv0_GY8YSsTO_GrgCAP7OiRBK9MwvoL-OYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873841439</pqid></control><display><type>article</type><title>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</title><source>IEEE Xplore (Online service)</source><creator>JIANG, Joe-Air ; CHUANG, Cheng-Long ; WANG, Yung-Chung ; HUNG, Chih-Hung ; WANG, Jiing-Yi ; LEE, Chien-Hsing ; HSIAO, Ying-Tung</creator><creatorcontrib>JIANG, Joe-Air ; CHUANG, Cheng-Long ; WANG, Yung-Chung ; HUNG, Chih-Hung ; WANG, Jiing-Yi ; LEE, Chien-Hsing ; HSIAO, Ying-Tung</creatorcontrib><description>This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2011.2141158</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit faults ; Classification ; Computer simulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Evolvable hardware ; Exact sciences and technology ; fault classification ; Fault detection ; Fault diagnosis ; fault location ; Field programmable gate arrays ; field-programmable gate array (FPGA) ; Hardware ; Mathematical models ; Miscellaneous ; Neural networks ; Power networks and lines ; Principal component analysis ; Real time systems ; Studies ; Support vector machines ; Testing. Reliability. Quality control ; Training ; Wavelet transforms</subject><ispartof>IEEE transactions on power delivery, 2011-07, Vol.26 (3), p.1999-2008</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</citedby><cites>FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5779724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24322579$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JIANG, Joe-Air</creatorcontrib><creatorcontrib>CHUANG, Cheng-Long</creatorcontrib><creatorcontrib>WANG, Yung-Chung</creatorcontrib><creatorcontrib>HUNG, Chih-Hung</creatorcontrib><creatorcontrib>WANG, Jiing-Yi</creatorcontrib><creatorcontrib>LEE, Chien-Hsing</creatorcontrib><creatorcontrib>HSIAO, Ying-Tung</creatorcontrib><title>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements.</description><subject>Applied sciences</subject><subject>Circuit faults</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Evolvable hardware</subject><subject>Exact sciences and technology</subject><subject>fault classification</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fault location</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate array (FPGA)</subject><subject>Hardware</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Neural networks</subject><subject>Power networks and lines</subject><subject>Principal component analysis</subject><subject>Real time systems</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Testing. Reliability. Quality control</subject><subject>Training</subject><subject>Wavelet transforms</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkF9LwzAUxYMoOKdfQF-CIL7YmaRpk_g2NqeDgSITH0Oa3kC1f2bSIvv2duvwwafLufd3D4eD0CUlE0qJul-_frzNJ4xQOmGUU5rIIzSiKhYRZ0QeoxGRMomkEuIUnYXwSQjhRJERqqb4eZv5IscLbyr4afwXdo3HC9OVLZ5DC7YtmvoOz0oTQuEKawZt6hyvmkFFr8a3eLl8wMtqU0IFdbvf76E1hBa_Qej9wjk6caYMcHGYY_S-eFzPnqPVy9NyNl1FNk7SNhIy5jlxXGROZi4TqeXcOqsEoUylqVFZJoRUQIETG6sMhFU55EymlErrIB6j28F345vvrg-gqyJYKEtTQ9MFrQhNE0YS3pPX_8jPpvN1H05LEUtOeax6iA2Q9U0IHpze-KIyfqsp0bv-9b5_vetfH_rvn24OziZYUzpvaluEv0_GY8YSsTO_GrgCAP7OiRBK9MwvoL-OYg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>JIANG, Joe-Air</creator><creator>CHUANG, Cheng-Long</creator><creator>WANG, Yung-Chung</creator><creator>HUNG, Chih-Hung</creator><creator>WANG, Jiing-Yi</creator><creator>LEE, Chien-Hsing</creator><creator>HSIAO, Ying-Tung</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20110701</creationdate><title>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</title><author>JIANG, Joe-Air ; CHUANG, Cheng-Long ; WANG, Yung-Chung ; HUNG, Chih-Hung ; WANG, Jiing-Yi ; LEE, Chien-Hsing ; HSIAO, Ying-Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Circuit faults</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Evolvable hardware</topic><topic>Exact sciences and technology</topic><topic>fault classification</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fault location</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate array (FPGA)</topic><topic>Hardware</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Neural networks</topic><topic>Power networks and lines</topic><topic>Principal component analysis</topic><topic>Real time systems</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Testing. Reliability. Quality control</topic><topic>Training</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, Joe-Air</creatorcontrib><creatorcontrib>CHUANG, Cheng-Long</creatorcontrib><creatorcontrib>WANG, Yung-Chung</creatorcontrib><creatorcontrib>HUNG, Chih-Hung</creatorcontrib><creatorcontrib>WANG, Jiing-Yi</creatorcontrib><creatorcontrib>LEE, Chien-Hsing</creatorcontrib><creatorcontrib>HSIAO, Ying-Tung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, Joe-Air</au><au>CHUANG, Cheng-Long</au><au>WANG, Yung-Chung</au><au>HUNG, Chih-Hung</au><au>WANG, Jiing-Yi</au><au>LEE, Chien-Hsing</au><au>HSIAO, Ying-Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>26</volume><issue>3</issue><spage>1999</spage><epage>2008</epage><pages>1999-2008</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2011.2141158</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2011-07, Vol.26 (3), p.1999-2008
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_miscellaneous_901652054
source IEEE Xplore (Online service)
subjects Applied sciences
Circuit faults
Classification
Computer simulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Evolvable hardware
Exact sciences and technology
fault classification
Fault detection
Fault diagnosis
fault location
Field programmable gate arrays
field-programmable gate array (FPGA)
Hardware
Mathematical models
Miscellaneous
Neural networks
Power networks and lines
Principal component analysis
Real time systems
Studies
Support vector machines
Testing. Reliability. Quality control
Training
Wavelet transforms
title A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Framework%20for%20Fault%20Detection,%20Classification,%20and%20Location-Part%20II:%20Implementation%20and%20Test%20Results&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=JIANG,%20Joe-Air&rft.date=2011-07-01&rft.volume=26&rft.issue=3&rft.spage=1999&rft.epage=2008&rft.pages=1999-2008&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2011.2141158&rft_dat=%3Cproquest_cross%3E2385778761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873841439&rft_id=info:pmid/&rft_ieee_id=5779724&rfr_iscdi=true