Loading…
A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results
This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, princ...
Saved in:
Published in: | IEEE transactions on power delivery 2011-07, Vol.26 (3), p.1999-2008 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3 |
container_end_page | 2008 |
container_issue | 3 |
container_start_page | 1999 |
container_title | IEEE transactions on power delivery |
container_volume | 26 |
creator | JIANG, Joe-Air CHUANG, Cheng-Long WANG, Yung-Chung HUNG, Chih-Hung WANG, Jiing-Yi LEE, Chien-Hsing HSIAO, Ying-Tung |
description | This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements. |
doi_str_mv | 10.1109/TPWRD.2011.2141158 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901652054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5779724</ieee_id><sourcerecordid>2385778761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</originalsourceid><addsrcrecordid>eNpdkF9LwzAUxYMoOKdfQF-CIL7YmaRpk_g2NqeDgSITH0Oa3kC1f2bSIvv2duvwwafLufd3D4eD0CUlE0qJul-_frzNJ4xQOmGUU5rIIzSiKhYRZ0QeoxGRMomkEuIUnYXwSQjhRJERqqb4eZv5IscLbyr4afwXdo3HC9OVLZ5DC7YtmvoOz0oTQuEKawZt6hyvmkFFr8a3eLl8wMtqU0IFdbvf76E1hBa_Qej9wjk6caYMcHGYY_S-eFzPnqPVy9NyNl1FNk7SNhIy5jlxXGROZi4TqeXcOqsEoUylqVFZJoRUQIETG6sMhFU55EymlErrIB6j28F345vvrg-gqyJYKEtTQ9MFrQhNE0YS3pPX_8jPpvN1H05LEUtOeax6iA2Q9U0IHpze-KIyfqsp0bv-9b5_vetfH_rvn24OziZYUzpvaluEv0_GY8YSsTO_GrgCAP7OiRBK9MwvoL-OYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873841439</pqid></control><display><type>article</type><title>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</title><source>IEEE Xplore (Online service)</source><creator>JIANG, Joe-Air ; CHUANG, Cheng-Long ; WANG, Yung-Chung ; HUNG, Chih-Hung ; WANG, Jiing-Yi ; LEE, Chien-Hsing ; HSIAO, Ying-Tung</creator><creatorcontrib>JIANG, Joe-Air ; CHUANG, Cheng-Long ; WANG, Yung-Chung ; HUNG, Chih-Hung ; WANG, Jiing-Yi ; LEE, Chien-Hsing ; HSIAO, Ying-Tung</creatorcontrib><description>This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2011.2141158</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit faults ; Classification ; Computer simulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Evolvable hardware ; Exact sciences and technology ; fault classification ; Fault detection ; Fault diagnosis ; fault location ; Field programmable gate arrays ; field-programmable gate array (FPGA) ; Hardware ; Mathematical models ; Miscellaneous ; Neural networks ; Power networks and lines ; Principal component analysis ; Real time systems ; Studies ; Support vector machines ; Testing. Reliability. Quality control ; Training ; Wavelet transforms</subject><ispartof>IEEE transactions on power delivery, 2011-07, Vol.26 (3), p.1999-2008</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</citedby><cites>FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5779724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24322579$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JIANG, Joe-Air</creatorcontrib><creatorcontrib>CHUANG, Cheng-Long</creatorcontrib><creatorcontrib>WANG, Yung-Chung</creatorcontrib><creatorcontrib>HUNG, Chih-Hung</creatorcontrib><creatorcontrib>WANG, Jiing-Yi</creatorcontrib><creatorcontrib>LEE, Chien-Hsing</creatorcontrib><creatorcontrib>HSIAO, Ying-Tung</creatorcontrib><title>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements.</description><subject>Applied sciences</subject><subject>Circuit faults</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Evolvable hardware</subject><subject>Exact sciences and technology</subject><subject>fault classification</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fault location</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate array (FPGA)</subject><subject>Hardware</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Neural networks</subject><subject>Power networks and lines</subject><subject>Principal component analysis</subject><subject>Real time systems</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Testing. Reliability. Quality control</subject><subject>Training</subject><subject>Wavelet transforms</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkF9LwzAUxYMoOKdfQF-CIL7YmaRpk_g2NqeDgSITH0Oa3kC1f2bSIvv2duvwwafLufd3D4eD0CUlE0qJul-_frzNJ4xQOmGUU5rIIzSiKhYRZ0QeoxGRMomkEuIUnYXwSQjhRJERqqb4eZv5IscLbyr4afwXdo3HC9OVLZ5DC7YtmvoOz0oTQuEKawZt6hyvmkFFr8a3eLl8wMtqU0IFdbvf76E1hBa_Qej9wjk6caYMcHGYY_S-eFzPnqPVy9NyNl1FNk7SNhIy5jlxXGROZi4TqeXcOqsEoUylqVFZJoRUQIETG6sMhFU55EymlErrIB6j28F345vvrg-gqyJYKEtTQ9MFrQhNE0YS3pPX_8jPpvN1H05LEUtOeax6iA2Q9U0IHpze-KIyfqsp0bv-9b5_vetfH_rvn24OziZYUzpvaluEv0_GY8YSsTO_GrgCAP7OiRBK9MwvoL-OYg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>JIANG, Joe-Air</creator><creator>CHUANG, Cheng-Long</creator><creator>WANG, Yung-Chung</creator><creator>HUNG, Chih-Hung</creator><creator>WANG, Jiing-Yi</creator><creator>LEE, Chien-Hsing</creator><creator>HSIAO, Ying-Tung</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20110701</creationdate><title>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</title><author>JIANG, Joe-Air ; CHUANG, Cheng-Long ; WANG, Yung-Chung ; HUNG, Chih-Hung ; WANG, Jiing-Yi ; LEE, Chien-Hsing ; HSIAO, Ying-Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Circuit faults</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Evolvable hardware</topic><topic>Exact sciences and technology</topic><topic>fault classification</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fault location</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate array (FPGA)</topic><topic>Hardware</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Neural networks</topic><topic>Power networks and lines</topic><topic>Principal component analysis</topic><topic>Real time systems</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Testing. Reliability. Quality control</topic><topic>Training</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, Joe-Air</creatorcontrib><creatorcontrib>CHUANG, Cheng-Long</creatorcontrib><creatorcontrib>WANG, Yung-Chung</creatorcontrib><creatorcontrib>HUNG, Chih-Hung</creatorcontrib><creatorcontrib>WANG, Jiing-Yi</creatorcontrib><creatorcontrib>LEE, Chien-Hsing</creatorcontrib><creatorcontrib>HSIAO, Ying-Tung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, Joe-Air</au><au>CHUANG, Cheng-Long</au><au>WANG, Yung-Chung</au><au>HUNG, Chih-Hung</au><au>WANG, Jiing-Yi</au><au>LEE, Chien-Hsing</au><au>HSIAO, Ying-Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>26</volume><issue>3</issue><spage>1999</spage><epage>2008</epage><pages>1999-2008</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This paper is the second part of a series of two papers addressing a hybrid framework for achieving fault detection, classification, and location, simultaneously. The proposed framework is formed by a variety of analysis techniques, including symmetrical component analysis, wavelet transforms, principal component analysis, support vector machines, and adaptive structure neural networks. In our previous paper, the mathematical foundation of this framework with numerical results obtained by computer-based simulations has been presented. This paper is devoted to discuss the field-programmable gate-array implementation and experimental results acquired by using real-world scenarios. The hardware implementation of the runtime training technique in the proposed framework is an evolvable hardware tested by the power signals used in a power company transmission network for performance evaluation. The runtime training technique allows the FPGA to have learning and re-training capabilities. The main purpose of this paper is to show the applicability of the proposed framework on a hardware platform and test the framework's robustness and evolvability against noises from the system and measurements.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2011.2141158</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2011-07, Vol.26 (3), p.1999-2008 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_proquest_miscellaneous_901652054 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Circuit faults Classification Computer simulation Electrical engineering. Electrical power engineering Electrical power engineering Evolvable hardware Exact sciences and technology fault classification Fault detection Fault diagnosis fault location Field programmable gate arrays field-programmable gate array (FPGA) Hardware Mathematical models Miscellaneous Neural networks Power networks and lines Principal component analysis Real time systems Studies Support vector machines Testing. Reliability. Quality control Training Wavelet transforms |
title | A Hybrid Framework for Fault Detection, Classification, and Location-Part II: Implementation and Test Results |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Framework%20for%20Fault%20Detection,%20Classification,%20and%20Location-Part%20II:%20Implementation%20and%20Test%20Results&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=JIANG,%20Joe-Air&rft.date=2011-07-01&rft.volume=26&rft.issue=3&rft.spage=1999&rft.epage=2008&rft.pages=1999-2008&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2011.2141158&rft_dat=%3Cproquest_cross%3E2385778761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-7834d0f47bf8bfb76c44cfc97012966a9bb7789e1e40c39be7c9ded286118cfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873841439&rft_id=info:pmid/&rft_ieee_id=5779724&rfr_iscdi=true |