Loading…
Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites
Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 89...
Saved in:
Published in: | Journal of applied polymer science 2010-06, Vol.116 (6), p.3212-3219 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673 |
---|---|
cites | cdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673 |
container_end_page | 3219 |
container_issue | 6 |
container_start_page | 3212 |
container_title | Journal of applied polymer science |
container_volume | 116 |
creator | Gwon, Jae Gyoung Lee, Sun Young Doh, Geum Hyun Kim, Jung Hyeun |
description | Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 |
doi_str_mv | 10.1002/app.31746 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901654291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901654291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4WvkE2Ii6qSdqkyVIGr4g3RgVBQiY91Wg7qUkHHZ_e6Kg7cXUW5_v_w_kQ2qBkhxLCdk3X7eS0LMQCGlCiyqwQTC6iQdrRTCrFl9FKjE-EUMqJGKD74aMJxvYQ3LvpnZ9gX2P7CK2zpmlmuPWVqx1U-NX7CtduDCHiaXSTB3wwOr7CsQPbBx-t72a49gGPnbe-7Xx0PcQ1tFSbJsL691xF1wf7o-FRdnp-eDzcO81sQajIBJSKyJxQawmXnAGRSgIh1o6rSpR5CaQU3Oam5OkNGDNgklHBc8nrwiRgFW3Ne7vgX6YQe926aKFpzAT8NGqVrvCCKfovKZVgjKXiRG7PSZveiwFq3QXXmjDTlOhP1zq51l-uE7v53Wpi8lYHM7Eu_gYYE0l9oRK3O-deXQOzvwv13sXFT3M2T7jYw9tvwoRn_SmG69uzQ313MroRZ_xSq_wDccqcKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896222385</pqid></control><display><type>article</type><title>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</title><source>Wiley</source><creator>Gwon, Jae Gyoung ; Lee, Sun Young ; Doh, Geum Hyun ; Kim, Jung Hyeun</creator><creatorcontrib>Gwon, Jae Gyoung ; Lee, Sun Young ; Doh, Geum Hyun ; Kim, Jung Hyeun</creatorcontrib><description>Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.31746</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Asymmetry ; Bonding ; C band ; Carbon monoxide ; Compounding ingredients ; coupling agent ; crystalline structure ; Exact sciences and technology ; Fibers ; Fillers and reinforcing agents ; FTIR ; hydrophilic polymer ; Miscellaneous ; NaOH ; Polymer industry, paints, wood ; Silicon ; Silicon dioxide ; Spectra ; Spectroscopy ; Stretching ; Technology of polymers ; Wood ; Wood. Paper. Non wovens</subject><ispartof>Journal of applied polymer science, 2010-06, Vol.116 (6), p.3212-3219</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</citedby><cites>FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22689949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gwon, Jae Gyoung</creatorcontrib><creatorcontrib>Lee, Sun Young</creatorcontrib><creatorcontrib>Doh, Geum Hyun</creatorcontrib><creatorcontrib>Kim, Jung Hyeun</creatorcontrib><title>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Bonding</subject><subject>C band</subject><subject>Carbon monoxide</subject><subject>Compounding ingredients</subject><subject>coupling agent</subject><subject>crystalline structure</subject><subject>Exact sciences and technology</subject><subject>Fibers</subject><subject>Fillers and reinforcing agents</subject><subject>FTIR</subject><subject>hydrophilic polymer</subject><subject>Miscellaneous</subject><subject>NaOH</subject><subject>Polymer industry, paints, wood</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Stretching</subject><subject>Technology of polymers</subject><subject>Wood</subject><subject>Wood. Paper. Non wovens</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4WvkE2Ii6qSdqkyVIGr4g3RgVBQiY91Wg7qUkHHZ_e6Kg7cXUW5_v_w_kQ2qBkhxLCdk3X7eS0LMQCGlCiyqwQTC6iQdrRTCrFl9FKjE-EUMqJGKD74aMJxvYQ3LvpnZ9gX2P7CK2zpmlmuPWVqx1U-NX7CtduDCHiaXSTB3wwOr7CsQPbBx-t72a49gGPnbe-7Xx0PcQ1tFSbJsL691xF1wf7o-FRdnp-eDzcO81sQajIBJSKyJxQawmXnAGRSgIh1o6rSpR5CaQU3Oam5OkNGDNgklHBc8nrwiRgFW3Ne7vgX6YQe926aKFpzAT8NGqVrvCCKfovKZVgjKXiRG7PSZveiwFq3QXXmjDTlOhP1zq51l-uE7v53Wpi8lYHM7Eu_gYYE0l9oRK3O-deXQOzvwv13sXFT3M2T7jYw9tvwoRn_SmG69uzQ313MroRZ_xSq_wDccqcKg</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Gwon, Jae Gyoung</creator><creator>Lee, Sun Young</creator><creator>Doh, Geum Hyun</creator><creator>Kim, Jung Hyeun</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100615</creationdate><title>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</title><author>Gwon, Jae Gyoung ; Lee, Sun Young ; Doh, Geum Hyun ; Kim, Jung Hyeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Bonding</topic><topic>C band</topic><topic>Carbon monoxide</topic><topic>Compounding ingredients</topic><topic>coupling agent</topic><topic>crystalline structure</topic><topic>Exact sciences and technology</topic><topic>Fibers</topic><topic>Fillers and reinforcing agents</topic><topic>FTIR</topic><topic>hydrophilic polymer</topic><topic>Miscellaneous</topic><topic>NaOH</topic><topic>Polymer industry, paints, wood</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Stretching</topic><topic>Technology of polymers</topic><topic>Wood</topic><topic>Wood. Paper. Non wovens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gwon, Jae Gyoung</creatorcontrib><creatorcontrib>Lee, Sun Young</creatorcontrib><creatorcontrib>Doh, Geum Hyun</creatorcontrib><creatorcontrib>Kim, Jung Hyeun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gwon, Jae Gyoung</au><au>Lee, Sun Young</au><au>Doh, Geum Hyun</au><au>Kim, Jung Hyeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2010-06-15</date><risdate>2010</risdate><volume>116</volume><issue>6</issue><spage>3212</spage><epage>3219</epage><pages>3212-3219</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.31746</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2010-06, Vol.116 (6), p.3212-3219 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_901654291 |
source | Wiley |
subjects | Applied sciences Asymmetry Bonding C band Carbon monoxide Compounding ingredients coupling agent crystalline structure Exact sciences and technology Fibers Fillers and reinforcing agents FTIR hydrophilic polymer Miscellaneous NaOH Polymer industry, paints, wood Silicon Silicon dioxide Spectra Spectroscopy Stretching Technology of polymers Wood Wood. Paper. Non wovens |
title | Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20chemically%20modified%20wood%20fibers%20using%20FTIR%20spectroscopy%20for%20biocomposites&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Gwon,%20Jae%20Gyoung&rft.date=2010-06-15&rft.volume=116&rft.issue=6&rft.spage=3212&rft.epage=3219&rft.pages=3212-3219&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.31746&rft_dat=%3Cproquest_cross%3E901654291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896222385&rft_id=info:pmid/&rfr_iscdi=true |