Loading…

Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites

Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 89...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2010-06, Vol.116 (6), p.3212-3219
Main Authors: Gwon, Jae Gyoung, Lee, Sun Young, Doh, Geum Hyun, Kim, Jung Hyeun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673
cites cdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673
container_end_page 3219
container_issue 6
container_start_page 3212
container_title Journal of applied polymer science
container_volume 116
creator Gwon, Jae Gyoung
Lee, Sun Young
Doh, Geum Hyun
Kim, Jung Hyeun
description Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
doi_str_mv 10.1002/app.31746
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901654291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901654291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4WvkE2Ii6qSdqkyVIGr4g3RgVBQiY91Wg7qUkHHZ_e6Kg7cXUW5_v_w_kQ2qBkhxLCdk3X7eS0LMQCGlCiyqwQTC6iQdrRTCrFl9FKjE-EUMqJGKD74aMJxvYQ3LvpnZ9gX2P7CK2zpmlmuPWVqx1U-NX7CtduDCHiaXSTB3wwOr7CsQPbBx-t72a49gGPnbe-7Xx0PcQ1tFSbJsL691xF1wf7o-FRdnp-eDzcO81sQajIBJSKyJxQawmXnAGRSgIh1o6rSpR5CaQU3Oam5OkNGDNgklHBc8nrwiRgFW3Ne7vgX6YQe926aKFpzAT8NGqVrvCCKfovKZVgjKXiRG7PSZveiwFq3QXXmjDTlOhP1zq51l-uE7v53Wpi8lYHM7Eu_gYYE0l9oRK3O-deXQOzvwv13sXFT3M2T7jYw9tvwoRn_SmG69uzQ313MroRZ_xSq_wDccqcKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896222385</pqid></control><display><type>article</type><title>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</title><source>Wiley</source><creator>Gwon, Jae Gyoung ; Lee, Sun Young ; Doh, Geum Hyun ; Kim, Jung Hyeun</creator><creatorcontrib>Gwon, Jae Gyoung ; Lee, Sun Young ; Doh, Geum Hyun ; Kim, Jung Hyeun</creatorcontrib><description>Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.31746</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Asymmetry ; Bonding ; C band ; Carbon monoxide ; Compounding ingredients ; coupling agent ; crystalline structure ; Exact sciences and technology ; Fibers ; Fillers and reinforcing agents ; FTIR ; hydrophilic polymer ; Miscellaneous ; NaOH ; Polymer industry, paints, wood ; Silicon ; Silicon dioxide ; Spectra ; Spectroscopy ; Stretching ; Technology of polymers ; Wood ; Wood. Paper. Non wovens</subject><ispartof>Journal of applied polymer science, 2010-06, Vol.116 (6), p.3212-3219</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</citedby><cites>FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22689949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gwon, Jae Gyoung</creatorcontrib><creatorcontrib>Lee, Sun Young</creatorcontrib><creatorcontrib>Doh, Geum Hyun</creatorcontrib><creatorcontrib>Kim, Jung Hyeun</creatorcontrib><title>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Bonding</subject><subject>C band</subject><subject>Carbon monoxide</subject><subject>Compounding ingredients</subject><subject>coupling agent</subject><subject>crystalline structure</subject><subject>Exact sciences and technology</subject><subject>Fibers</subject><subject>Fillers and reinforcing agents</subject><subject>FTIR</subject><subject>hydrophilic polymer</subject><subject>Miscellaneous</subject><subject>NaOH</subject><subject>Polymer industry, paints, wood</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Stretching</subject><subject>Technology of polymers</subject><subject>Wood</subject><subject>Wood. Paper. Non wovens</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4WvkE2Ii6qSdqkyVIGr4g3RgVBQiY91Wg7qUkHHZ_e6Kg7cXUW5_v_w_kQ2qBkhxLCdk3X7eS0LMQCGlCiyqwQTC6iQdrRTCrFl9FKjE-EUMqJGKD74aMJxvYQ3LvpnZ9gX2P7CK2zpmlmuPWVqx1U-NX7CtduDCHiaXSTB3wwOr7CsQPbBx-t72a49gGPnbe-7Xx0PcQ1tFSbJsL691xF1wf7o-FRdnp-eDzcO81sQajIBJSKyJxQawmXnAGRSgIh1o6rSpR5CaQU3Oam5OkNGDNgklHBc8nrwiRgFW3Ne7vgX6YQe926aKFpzAT8NGqVrvCCKfovKZVgjKXiRG7PSZveiwFq3QXXmjDTlOhP1zq51l-uE7v53Wpi8lYHM7Eu_gYYE0l9oRK3O-deXQOzvwv13sXFT3M2T7jYw9tvwoRn_SmG69uzQ313MroRZ_xSq_wDccqcKg</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Gwon, Jae Gyoung</creator><creator>Lee, Sun Young</creator><creator>Doh, Geum Hyun</creator><creator>Kim, Jung Hyeun</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100615</creationdate><title>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</title><author>Gwon, Jae Gyoung ; Lee, Sun Young ; Doh, Geum Hyun ; Kim, Jung Hyeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Bonding</topic><topic>C band</topic><topic>Carbon monoxide</topic><topic>Compounding ingredients</topic><topic>coupling agent</topic><topic>crystalline structure</topic><topic>Exact sciences and technology</topic><topic>Fibers</topic><topic>Fillers and reinforcing agents</topic><topic>FTIR</topic><topic>hydrophilic polymer</topic><topic>Miscellaneous</topic><topic>NaOH</topic><topic>Polymer industry, paints, wood</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Stretching</topic><topic>Technology of polymers</topic><topic>Wood</topic><topic>Wood. Paper. Non wovens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gwon, Jae Gyoung</creatorcontrib><creatorcontrib>Lee, Sun Young</creatorcontrib><creatorcontrib>Doh, Geum Hyun</creatorcontrib><creatorcontrib>Kim, Jung Hyeun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gwon, Jae Gyoung</au><au>Lee, Sun Young</au><au>Doh, Geum Hyun</au><au>Kim, Jung Hyeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2010-06-15</date><risdate>2010</risdate><volume>116</volume><issue>6</issue><spage>3212</spage><epage>3219</epage><pages>3212-3219</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Chemical modifications of wood fibers (Lignocel® C120) were performed for biocomposite applications, and chemically modified wood fibers were analyzed by FTIR spectroscopy. NaOH treatment showed band shifts from Cell‐I to Cell‐II in FTIR spectra from 2902 cm−1, 1425 cm−1, 1163 cm−1, 983 cm−1, and 897 cm−1 to 2894 cm−1, 1420 cm−1, 1161 cm−1, 993 cm−1, and 895 cm−1 and the change in peak height at 1111 cm−1 and 1059 cm−1 assigned for Cell‐I structure. Silane treatment showed peak changes at 1200 cm−1 assigned as SiOC band, at 765 cm−1 assigned as SiC symmetric stretching bond, at 700 cm−1 assigned as SiOSi symmetric stretching, and at 465 cm−1 assigned as SiOC asymmetric bending. Benzoyl treatment resulted in an increase in the carbonyl stretching absorption at 1723 cm−1 and in band characteristics of aromatic rings (1604 cm−1 and 710 cm−1) and a strong absorption at 1272 cm−1 for CO band in aromatic ring. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.31746</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2010-06, Vol.116 (6), p.3212-3219
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_901654291
source Wiley
subjects Applied sciences
Asymmetry
Bonding
C band
Carbon monoxide
Compounding ingredients
coupling agent
crystalline structure
Exact sciences and technology
Fibers
Fillers and reinforcing agents
FTIR
hydrophilic polymer
Miscellaneous
NaOH
Polymer industry, paints, wood
Silicon
Silicon dioxide
Spectra
Spectroscopy
Stretching
Technology of polymers
Wood
Wood. Paper. Non wovens
title Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20chemically%20modified%20wood%20fibers%20using%20FTIR%20spectroscopy%20for%20biocomposites&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Gwon,%20Jae%20Gyoung&rft.date=2010-06-15&rft.volume=116&rft.issue=6&rft.spage=3212&rft.epage=3219&rft.pages=3212-3219&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.31746&rft_dat=%3Cproquest_cross%3E901654291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4016-6e7908301cc05852e0898e00ccbdd6737e0765c3a75021eb2e282165385f4a673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896222385&rft_id=info:pmid/&rfr_iscdi=true