Loading…
Selection of model parameters for off-line parameter estimation
Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to...
Saved in:
Published in: | IEEE transactions on control systems technology 2004-05, Vol.12 (3), p.402-412 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553 |
---|---|
cites | cdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553 |
container_end_page | 412 |
container_issue | 3 |
container_start_page | 402 |
container_title | IEEE transactions on control systems technology |
container_volume | 12 |
creator | Rujun Li Henson, M.A. Kurtz, M.J. |
description | Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM). |
doi_str_mv | 10.1109/TCST.2004.824799 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901655126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1291410</ieee_id><sourcerecordid>901655126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxRdRsFbvgpdFUE9bJ5-bnESKX1Dw0HoO2ewEtmx3a9Ie_O_NskLBg55mmPzeJC8vyy4JzAgBfb-aL1czCsBnivJS66NsQoRQBSgpjlMPkhVSMHmancW4BiBc0HKSPSyxRbdr-i7vfb7pa2zzrQ12gzsMMfd9SHNftE2Hh3mOcdds7KA6z068bSNe_NRp9vH8tJq_Fov3l7f546JwXPBdIT0DWVmhsAJPrGLKc84FoK2pq1gtsKwl1ZUDXteVox6JRCepqhHKWgg2ze7GvdvQf-7T_WbTRIdtazvs99FoIFIIQmUib_8kqQZGlOb_g0pSqolK4PUvcN3vQ5fsGqWYYHqEYIRc6GMM6M02pD8KX4aAGRIyQ0JmSMiMCSXJzc9eG51tfbCda-JBJ0qiSz14vxq5BhEPx-ltnAD7BqJBmOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883539918</pqid></control><display><type>article</type><title>Selection of model parameters for off-line parameter estimation</title><source>IEEE Xplore (Online service)</source><creator>Rujun Li ; Henson, M.A. ; Kurtz, M.J.</creator><creatorcontrib>Rujun Li ; Henson, M.A. ; Kurtz, M.J.</creatorcontrib><description>Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2004.824799</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Dynamic models ; Exact sciences and technology ; Inductors ; Kinetic theory ; Laboratories ; Mathematical analysis ; Mathematical models ; Parameter estimation ; Plastics industry ; Polymers ; Reactors ; Recursive ; Recursive estimation ; Steady-state ; Studies ; Vectors ; Vectors (mathematics) ; Yield estimation</subject><ispartof>IEEE transactions on control systems technology, 2004-05, Vol.12 (3), p.402-412</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</citedby><cites>FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1291410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15719795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rujun Li</creatorcontrib><creatorcontrib>Henson, M.A.</creatorcontrib><creatorcontrib>Kurtz, M.J.</creatorcontrib><title>Selection of model parameters for off-line parameter estimation</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Dynamic models</subject><subject>Exact sciences and technology</subject><subject>Inductors</subject><subject>Kinetic theory</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Plastics industry</subject><subject>Polymers</subject><subject>Reactors</subject><subject>Recursive</subject><subject>Recursive estimation</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Yield estimation</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxRdRsFbvgpdFUE9bJ5-bnESKX1Dw0HoO2ewEtmx3a9Ie_O_NskLBg55mmPzeJC8vyy4JzAgBfb-aL1czCsBnivJS66NsQoRQBSgpjlMPkhVSMHmancW4BiBc0HKSPSyxRbdr-i7vfb7pa2zzrQ12gzsMMfd9SHNftE2Hh3mOcdds7KA6z068bSNe_NRp9vH8tJq_Fov3l7f546JwXPBdIT0DWVmhsAJPrGLKc84FoK2pq1gtsKwl1ZUDXteVox6JRCepqhHKWgg2ze7GvdvQf-7T_WbTRIdtazvs99FoIFIIQmUib_8kqQZGlOb_g0pSqolK4PUvcN3vQ5fsGqWYYHqEYIRc6GMM6M02pD8KX4aAGRIyQ0JmSMiMCSXJzc9eG51tfbCda-JBJ0qiSz14vxq5BhEPx-ltnAD7BqJBmOI</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Rujun Li</creator><creator>Henson, M.A.</creator><creator>Kurtz, M.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20040501</creationdate><title>Selection of model parameters for off-line parameter estimation</title><author>Rujun Li ; Henson, M.A. ; Kurtz, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Dynamic models</topic><topic>Exact sciences and technology</topic><topic>Inductors</topic><topic>Kinetic theory</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Plastics industry</topic><topic>Polymers</topic><topic>Reactors</topic><topic>Recursive</topic><topic>Recursive estimation</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rujun Li</creatorcontrib><creatorcontrib>Henson, M.A.</creatorcontrib><creatorcontrib>Kurtz, M.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rujun Li</au><au>Henson, M.A.</au><au>Kurtz, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of model parameters for off-line parameter estimation</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2004-05-01</date><risdate>2004</risdate><volume>12</volume><issue>3</issue><spage>402</spage><epage>412</epage><pages>402-412</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2004.824799</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2004-05, Vol.12 (3), p.402-412 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_miscellaneous_901655126 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Computer science control theory systems Control systems Control theory. Systems Dynamic models Exact sciences and technology Inductors Kinetic theory Laboratories Mathematical analysis Mathematical models Parameter estimation Plastics industry Polymers Reactors Recursive Recursive estimation Steady-state Studies Vectors Vectors (mathematics) Yield estimation |
title | Selection of model parameters for off-line parameter estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20model%20parameters%20for%20off-line%20parameter%20estimation&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Rujun%20Li&rft.date=2004-05-01&rft.volume=12&rft.issue=3&rft.spage=402&rft.epage=412&rft.pages=402-412&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2004.824799&rft_dat=%3Cproquest_cross%3E901655126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883539918&rft_id=info:pmid/&rft_ieee_id=1291410&rfr_iscdi=true |