Loading…

Selection of model parameters for off-line parameter estimation

Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2004-05, Vol.12 (3), p.402-412
Main Authors: Rujun Li, Henson, M.A., Kurtz, M.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553
cites cdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553
container_end_page 412
container_issue 3
container_start_page 402
container_title IEEE transactions on control systems technology
container_volume 12
creator Rujun Li
Henson, M.A.
Kurtz, M.J.
description Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).
doi_str_mv 10.1109/TCST.2004.824799
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901655126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1291410</ieee_id><sourcerecordid>901655126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxRdRsFbvgpdFUE9bJ5-bnESKX1Dw0HoO2ewEtmx3a9Ie_O_NskLBg55mmPzeJC8vyy4JzAgBfb-aL1czCsBnivJS66NsQoRQBSgpjlMPkhVSMHmancW4BiBc0HKSPSyxRbdr-i7vfb7pa2zzrQ12gzsMMfd9SHNftE2Hh3mOcdds7KA6z068bSNe_NRp9vH8tJq_Fov3l7f546JwXPBdIT0DWVmhsAJPrGLKc84FoK2pq1gtsKwl1ZUDXteVox6JRCepqhHKWgg2ze7GvdvQf-7T_WbTRIdtazvs99FoIFIIQmUib_8kqQZGlOb_g0pSqolK4PUvcN3vQ5fsGqWYYHqEYIRc6GMM6M02pD8KX4aAGRIyQ0JmSMiMCSXJzc9eG51tfbCda-JBJ0qiSz14vxq5BhEPx-ltnAD7BqJBmOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883539918</pqid></control><display><type>article</type><title>Selection of model parameters for off-line parameter estimation</title><source>IEEE Xplore (Online service)</source><creator>Rujun Li ; Henson, M.A. ; Kurtz, M.J.</creator><creatorcontrib>Rujun Li ; Henson, M.A. ; Kurtz, M.J.</creatorcontrib><description>Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2004.824799</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Dynamic models ; Exact sciences and technology ; Inductors ; Kinetic theory ; Laboratories ; Mathematical analysis ; Mathematical models ; Parameter estimation ; Plastics industry ; Polymers ; Reactors ; Recursive ; Recursive estimation ; Steady-state ; Studies ; Vectors ; Vectors (mathematics) ; Yield estimation</subject><ispartof>IEEE transactions on control systems technology, 2004-05, Vol.12 (3), p.402-412</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</citedby><cites>FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1291410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15719795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rujun Li</creatorcontrib><creatorcontrib>Henson, M.A.</creatorcontrib><creatorcontrib>Kurtz, M.J.</creatorcontrib><title>Selection of model parameters for off-line parameter estimation</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Dynamic models</subject><subject>Exact sciences and technology</subject><subject>Inductors</subject><subject>Kinetic theory</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Plastics industry</subject><subject>Polymers</subject><subject>Reactors</subject><subject>Recursive</subject><subject>Recursive estimation</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Yield estimation</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxRdRsFbvgpdFUE9bJ5-bnESKX1Dw0HoO2ewEtmx3a9Ie_O_NskLBg55mmPzeJC8vyy4JzAgBfb-aL1czCsBnivJS66NsQoRQBSgpjlMPkhVSMHmancW4BiBc0HKSPSyxRbdr-i7vfb7pa2zzrQ12gzsMMfd9SHNftE2Hh3mOcdds7KA6z068bSNe_NRp9vH8tJq_Fov3l7f546JwXPBdIT0DWVmhsAJPrGLKc84FoK2pq1gtsKwl1ZUDXteVox6JRCepqhHKWgg2ze7GvdvQf-7T_WbTRIdtazvs99FoIFIIQmUib_8kqQZGlOb_g0pSqolK4PUvcN3vQ5fsGqWYYHqEYIRc6GMM6M02pD8KX4aAGRIyQ0JmSMiMCSXJzc9eG51tfbCda-JBJ0qiSz14vxq5BhEPx-ltnAD7BqJBmOI</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Rujun Li</creator><creator>Henson, M.A.</creator><creator>Kurtz, M.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20040501</creationdate><title>Selection of model parameters for off-line parameter estimation</title><author>Rujun Li ; Henson, M.A. ; Kurtz, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Dynamic models</topic><topic>Exact sciences and technology</topic><topic>Inductors</topic><topic>Kinetic theory</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Plastics industry</topic><topic>Polymers</topic><topic>Reactors</topic><topic>Recursive</topic><topic>Recursive estimation</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rujun Li</creatorcontrib><creatorcontrib>Henson, M.A.</creatorcontrib><creatorcontrib>Kurtz, M.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rujun Li</au><au>Henson, M.A.</au><au>Kurtz, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of model parameters for off-line parameter estimation</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2004-05-01</date><risdate>2004</risdate><volume>12</volume><issue>3</issue><spage>402</spage><epage>412</epage><pages>402-412</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Mechanistic dynamic models often contain unknown parameters whose values are difficult to determine even with highly specialized laboratory experiments. A practical approach is to estimate such parameters from available process data. Typically only a subset of the parameters can be estimated due to restrictions imposed by the model structure, lack of measurements, and limited data. We present a simple parameter selection method which accounts for the first two factors independent of the data available for parameter estimation. The magnitude of each parameter effect on the measured variables is quantified by applying principal-component analysis to the steady-state parameter-output sensitivity matrix. The uniqueness of each parameter effect is determined by computing the minimum distance between the sensitivity vector of the particular parameter and the vector spaces spanned by sensitivity vectors of the parameters already selected for estimation. A recursive algorithm that provides a tradeoff between the magnitude and linear independence of parameter effects yields a ranking of the parameters according to their inherent ease of estimation. The parameter-selection procedure is applied to the problem of kinetic parameter estimation for an industrial model of a polymerization reactor. For this specific example, the proposed method yields superior estimation results than those obtained with a parameter-selection technique based on the Fisher information matrix (FIM).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2004.824799</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2004-05, Vol.12 (3), p.402-412
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_miscellaneous_901655126
source IEEE Xplore (Online service)
subjects Applied sciences
Computer science
control theory
systems
Control systems
Control theory. Systems
Dynamic models
Exact sciences and technology
Inductors
Kinetic theory
Laboratories
Mathematical analysis
Mathematical models
Parameter estimation
Plastics industry
Polymers
Reactors
Recursive
Recursive estimation
Steady-state
Studies
Vectors
Vectors (mathematics)
Yield estimation
title Selection of model parameters for off-line parameter estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20model%20parameters%20for%20off-line%20parameter%20estimation&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Rujun%20Li&rft.date=2004-05-01&rft.volume=12&rft.issue=3&rft.spage=402&rft.epage=412&rft.pages=402-412&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2004.824799&rft_dat=%3Cproquest_cross%3E901655126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-6f306ba58eb0f1a838f44450ead2cb3d5e7d629bc04ddbc2fe16ec628de07d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883539918&rft_id=info:pmid/&rft_ieee_id=1291410&rfr_iscdi=true