Loading…

Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system

The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a pr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2009-12, Vol.34 (23), p.9531-9542
Main Authors: Hwang, J.J., Lai, L.K., Wu, W., Chang, W.R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-bf691906e3b69de3e0bbd6d2a05cdb091935d02661294c26b8c5cea631a481423
cites
container_end_page 9542
container_issue 23
container_start_page 9531
container_title International journal of hydrogen energy
container_volume 34
creator Hwang, J.J.
Lai, L.K.
Wu, W.
Chang, W.R.
description The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.
doi_str_mv 10.1016/j.ijhydene.2009.09.100
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901658551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909015407</els_id><sourcerecordid>901658551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-bf691906e3b69de3e0bbd6d2a05cdb091935d02661294c26b8c5cea631a481423</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfYinnadJLvp5qbUTyh40XPIJrNtyu6mJttC_70pVa_CwMDM-87HQ8g1hYICFXfrwq1Xe4sDFgxAFikowAmZ0Homc17Ws1MyAS4g51TKc3IR4xqAzqCUEzJ_3A-6dybrvcXODcvMt5nONis_-p3vRp1aaXjwSxyydotdZrDrUqkJzmZxH0fsL8lZq7uIVz95Sj6fnz7mr_ni_eVt_rDITVnTMW9aIakEgbwR0iJHaBorLNNQGdtA6vHKAhOCMlkaJpraVAa14FQnf8n4lNwe526C_9piHFXv4uEcPaDfRiUTjaquKpqU4qg0wccYsFWb4Hod9oqCOkBTa_ULTR2gqRQJWjLe_KzQ0eiuDXowLv65GWOzBI4n3f1Rh-nfncOgonE4GLQuoBmV9e6_Vd9dxIXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901658551</pqid></control><display><type>article</type><title>Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hwang, J.J. ; Lai, L.K. ; Wu, W. ; Chang, W.R.</creator><creatorcontrib>Hwang, J.J. ; Lai, L.K. ; Wu, W. ; Chang, W.R.</creatorcontrib><description>The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.09.100</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Dynamical systems ; Dynamics ; Electrolytic cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Equipments, installations and applications ; Exact sciences and technology ; Fuel cells ; Fuels ; Generators ; Hybrid system ; Hybrid systems ; Hydrogen ; Mathematical models ; Natural energy ; Photovoltaic conversion ; Photovoltaic generator ; Proton exchange membrane fuel cell ; Solar cells ; Solar energy ; Solar power generation ; Water electrolyzer</subject><ispartof>International journal of hydrogen energy, 2009-12, Vol.34 (23), p.9531-9542</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-bf691906e3b69de3e0bbd6d2a05cdb091935d02661294c26b8c5cea631a481423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22271703$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, J.J.</creatorcontrib><creatorcontrib>Lai, L.K.</creatorcontrib><creatorcontrib>Wu, W.</creatorcontrib><creatorcontrib>Chang, W.R.</creatorcontrib><title>Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system</title><title>International journal of hydrogen energy</title><description>The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Generators</subject><subject>Hybrid system</subject><subject>Hybrid systems</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaic generator</subject><subject>Proton exchange membrane fuel cell</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar power generation</subject><subject>Water electrolyzer</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfYinnadJLvp5qbUTyh40XPIJrNtyu6mJttC_70pVa_CwMDM-87HQ8g1hYICFXfrwq1Xe4sDFgxAFikowAmZ0Homc17Ws1MyAS4g51TKc3IR4xqAzqCUEzJ_3A-6dybrvcXODcvMt5nONis_-p3vRp1aaXjwSxyydotdZrDrUqkJzmZxH0fsL8lZq7uIVz95Sj6fnz7mr_ni_eVt_rDITVnTMW9aIakEgbwR0iJHaBorLNNQGdtA6vHKAhOCMlkaJpraVAa14FQnf8n4lNwe526C_9piHFXv4uEcPaDfRiUTjaquKpqU4qg0wccYsFWb4Hod9oqCOkBTa_ULTR2gqRQJWjLe_KzQ0eiuDXowLv65GWOzBI4n3f1Rh-nfncOgonE4GLQuoBmV9e6_Vd9dxIXK</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Hwang, J.J.</creator><creator>Lai, L.K.</creator><creator>Wu, W.</creator><creator>Chang, W.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system</title><author>Hwang, J.J. ; Lai, L.K. ; Wu, W. ; Chang, W.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-bf691906e3b69de3e0bbd6d2a05cdb091935d02661294c26b8c5cea631a481423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Generators</topic><topic>Hybrid system</topic><topic>Hybrid systems</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaic generator</topic><topic>Proton exchange membrane fuel cell</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar power generation</topic><topic>Water electrolyzer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, J.J.</creatorcontrib><creatorcontrib>Lai, L.K.</creatorcontrib><creatorcontrib>Wu, W.</creatorcontrib><creatorcontrib>Chang, W.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, J.J.</au><au>Lai, L.K.</au><au>Wu, W.</au><au>Chang, W.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>34</volume><issue>23</issue><spage>9531</spage><epage>9542</epage><pages>9531-9542</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.09.100</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2009-12, Vol.34 (23), p.9531-9542
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_901658551
source ScienceDirect Freedom Collection 2022-2024
subjects Alternative fuels. Production and utilization
Applied sciences
Dynamical systems
Dynamics
Electrolytic cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Equipments, installations and applications
Exact sciences and technology
Fuel cells
Fuels
Generators
Hybrid system
Hybrid systems
Hydrogen
Mathematical models
Natural energy
Photovoltaic conversion
Photovoltaic generator
Proton exchange membrane fuel cell
Solar cells
Solar energy
Solar power generation
Water electrolyzer
title Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20modeling%20of%20a%20photovoltaic%20hydrogen%20fuel%20cell%20hybrid%20system&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Hwang,%20J.J.&rft.date=2009-12-01&rft.volume=34&rft.issue=23&rft.spage=9531&rft.epage=9542&rft.pages=9531-9542&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.09.100&rft_dat=%3Cproquest_cross%3E901658551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-bf691906e3b69de3e0bbd6d2a05cdb091935d02661294c26b8c5cea631a481423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901658551&rft_id=info:pmid/&rfr_iscdi=true