Loading…

Whence the Minkowski momentum?

Electromagnetic waves carry the Abraham momentum, whose density is given by p EM = S ( r , t) / c 2. Here S ( r , t) = E ( r , t) × H ( r , t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The ab...

Full description

Saved in:
Bibliographic Details
Published in:Optics communications 2010-10, Vol.283 (19), p.3557-3563
Main Authors: Mansuripur, Masud, Zakharian, Armis R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-be4f49deac4b76f4f57c0f6a67006fa50c4635c689028f7b6a7e2083f4feff123
cites cdi_FETCH-LOGICAL-c368t-be4f49deac4b76f4f57c0f6a67006fa50c4635c689028f7b6a7e2083f4feff123
container_end_page 3563
container_issue 19
container_start_page 3557
container_title Optics communications
container_volume 283
creator Mansuripur, Masud
Zakharian, Armis R.
description Electromagnetic waves carry the Abraham momentum, whose density is given by p EM = S ( r , t) / c 2. Here S ( r , t) = E ( r , t) × H ( r , t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The above statement is true irrespective of whether the waves reside in vacuum or within a ponderable medium, which medium may or may not be homogeneous, isotropic, transparent, linear, magnetic, etc. When a light pulse enters an absorbing medium, the force experienced by the medium is only partly due to the absorbed Abraham momentum. This absorbed momentum, of course, is manifested as Lorentz force (while the pulse is being extinguished within the absorber), but not all the Lorentz force experienced by the medium is attributable to the absorbed Abraham momentum. We consider an absorptive/reflective medium having the complex refractive index n 2 + i κ 2, submerged in a transparent dielectric of refractive index n 1, through which light must travel to reach the absorber/reflector. Depending on the impedance-mismatch between the two media, which mismatch is dependent on n 1, n 2, κ 2, either more or less light will be coupled into the absorber/reflector. The dependence of this impedance-mismatch on n 1 is entirely responsible for the appearance of the Minkowski momentum in certain radiation pressure experiments that involve submerged objects.
doi_str_mv 10.1016/j.optcom.2010.04.059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901659970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030401810004001</els_id><sourcerecordid>901659970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-be4f49deac4b76f4f57c0f6a67006fa50c4635c689028f7b6a7e2083f4feff123</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_QKQX8bTrZJNNdi-KFL-g4kXxGNJ0QtPubmqyVfz3pmzx6GlgeN55mYeQcwo5BSquV7nf9Ma3eQFpBTyHsj4gI1pJlgGjcEhGAAwyDrQ6JicxrgCAclaNyMXHEjuDk36JkxfXrf13XLtJ61vs-m17e0qOrG4inu3nmLw_3L9Nn7LZ6-Pz9G6WGSaqPpsjt7xeoDZ8LoXltpQGrNBCAgirSzBcsNKIqoaisnIutMQCKpZItJYWbEyuhrub4D-3GHvVumiwaXSHfhtVnd4s61pCIvlAmuBjDGjVJrhWhx9FQe1sqJUabKidDQVcJRspdrkv0NHoxgbdGRf_sgWDshSFSNzNwGH69sthUNG4naGFC2h6tfDu_6JfzQp2Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901659970</pqid></control><display><type>article</type><title>Whence the Minkowski momentum?</title><source>ScienceDirect Freedom Collection</source><creator>Mansuripur, Masud ; Zakharian, Armis R.</creator><creatorcontrib>Mansuripur, Masud ; Zakharian, Armis R.</creatorcontrib><description>Electromagnetic waves carry the Abraham momentum, whose density is given by p EM = S ( r , t) / c 2. Here S ( r , t) = E ( r , t) × H ( r , t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The above statement is true irrespective of whether the waves reside in vacuum or within a ponderable medium, which medium may or may not be homogeneous, isotropic, transparent, linear, magnetic, etc. When a light pulse enters an absorbing medium, the force experienced by the medium is only partly due to the absorbed Abraham momentum. This absorbed momentum, of course, is manifested as Lorentz force (while the pulse is being extinguished within the absorber), but not all the Lorentz force experienced by the medium is attributable to the absorbed Abraham momentum. We consider an absorptive/reflective medium having the complex refractive index n 2 + i κ 2, submerged in a transparent dielectric of refractive index n 1, through which light must travel to reach the absorber/reflector. Depending on the impedance-mismatch between the two media, which mismatch is dependent on n 1, n 2, κ 2, either more or less light will be coupled into the absorber/reflector. The dependence of this impedance-mismatch on n 1 is entirely responsible for the appearance of the Minkowski momentum in certain radiation pressure experiments that involve submerged objects.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2010.04.059</identifier><identifier>CODEN: OPCOB8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Density ; Electromagnetic fields ; Electromagnetic theory ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lorentz force ; Mathematical analysis ; Optical elements, devices, and systems ; Optics ; Photon momentum ; Physics ; Radiation pressure ; Reflectors ; Reflectors, beam splitters, and deflectors ; Refractive index ; Refractivity ; Submerged</subject><ispartof>Optics communications, 2010-10, Vol.283 (19), p.3557-3563</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-be4f49deac4b76f4f57c0f6a67006fa50c4635c689028f7b6a7e2083f4feff123</citedby><cites>FETCH-LOGICAL-c368t-be4f49deac4b76f4f57c0f6a67006fa50c4635c689028f7b6a7e2083f4feff123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23055626$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansuripur, Masud</creatorcontrib><creatorcontrib>Zakharian, Armis R.</creatorcontrib><title>Whence the Minkowski momentum?</title><title>Optics communications</title><description>Electromagnetic waves carry the Abraham momentum, whose density is given by p EM = S ( r , t) / c 2. Here S ( r , t) = E ( r , t) × H ( r , t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The above statement is true irrespective of whether the waves reside in vacuum or within a ponderable medium, which medium may or may not be homogeneous, isotropic, transparent, linear, magnetic, etc. When a light pulse enters an absorbing medium, the force experienced by the medium is only partly due to the absorbed Abraham momentum. This absorbed momentum, of course, is manifested as Lorentz force (while the pulse is being extinguished within the absorber), but not all the Lorentz force experienced by the medium is attributable to the absorbed Abraham momentum. We consider an absorptive/reflective medium having the complex refractive index n 2 + i κ 2, submerged in a transparent dielectric of refractive index n 1, through which light must travel to reach the absorber/reflector. Depending on the impedance-mismatch between the two media, which mismatch is dependent on n 1, n 2, κ 2, either more or less light will be coupled into the absorber/reflector. The dependence of this impedance-mismatch on n 1 is entirely responsible for the appearance of the Minkowski momentum in certain radiation pressure experiments that involve submerged objects.</description><subject>Density</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic theory</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lorentz force</subject><subject>Mathematical analysis</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Photon momentum</subject><subject>Physics</subject><subject>Radiation pressure</subject><subject>Reflectors</subject><subject>Reflectors, beam splitters, and deflectors</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Submerged</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_QKQX8bTrZJNNdi-KFL-g4kXxGNJ0QtPubmqyVfz3pmzx6GlgeN55mYeQcwo5BSquV7nf9Ma3eQFpBTyHsj4gI1pJlgGjcEhGAAwyDrQ6JicxrgCAclaNyMXHEjuDk36JkxfXrf13XLtJ61vs-m17e0qOrG4inu3nmLw_3L9Nn7LZ6-Pz9G6WGSaqPpsjt7xeoDZ8LoXltpQGrNBCAgirSzBcsNKIqoaisnIutMQCKpZItJYWbEyuhrub4D-3GHvVumiwaXSHfhtVnd4s61pCIvlAmuBjDGjVJrhWhx9FQe1sqJUabKidDQVcJRspdrkv0NHoxgbdGRf_sgWDshSFSNzNwGH69sthUNG4naGFC2h6tfDu_6JfzQp2Bw</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Mansuripur, Masud</creator><creator>Zakharian, Armis R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20101001</creationdate><title>Whence the Minkowski momentum?</title><author>Mansuripur, Masud ; Zakharian, Armis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-be4f49deac4b76f4f57c0f6a67006fa50c4635c689028f7b6a7e2083f4feff123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Density</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic theory</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lorentz force</topic><topic>Mathematical analysis</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Photon momentum</topic><topic>Physics</topic><topic>Radiation pressure</topic><topic>Reflectors</topic><topic>Reflectors, beam splitters, and deflectors</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Submerged</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansuripur, Masud</creatorcontrib><creatorcontrib>Zakharian, Armis R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansuripur, Masud</au><au>Zakharian, Armis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whence the Minkowski momentum?</atitle><jtitle>Optics communications</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>283</volume><issue>19</issue><spage>3557</spage><epage>3563</epage><pages>3557-3563</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><coden>OPCOB8</coden><abstract>Electromagnetic waves carry the Abraham momentum, whose density is given by p EM = S ( r , t) / c 2. Here S ( r , t) = E ( r , t) × H ( r , t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The above statement is true irrespective of whether the waves reside in vacuum or within a ponderable medium, which medium may or may not be homogeneous, isotropic, transparent, linear, magnetic, etc. When a light pulse enters an absorbing medium, the force experienced by the medium is only partly due to the absorbed Abraham momentum. This absorbed momentum, of course, is manifested as Lorentz force (while the pulse is being extinguished within the absorber), but not all the Lorentz force experienced by the medium is attributable to the absorbed Abraham momentum. We consider an absorptive/reflective medium having the complex refractive index n 2 + i κ 2, submerged in a transparent dielectric of refractive index n 1, through which light must travel to reach the absorber/reflector. Depending on the impedance-mismatch between the two media, which mismatch is dependent on n 1, n 2, κ 2, either more or less light will be coupled into the absorber/reflector. The dependence of this impedance-mismatch on n 1 is entirely responsible for the appearance of the Minkowski momentum in certain radiation pressure experiments that involve submerged objects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2010.04.059</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4018
ispartof Optics communications, 2010-10, Vol.283 (19), p.3557-3563
issn 0030-4018
1873-0310
language eng
recordid cdi_proquest_miscellaneous_901659970
source ScienceDirect Freedom Collection
subjects Density
Electromagnetic fields
Electromagnetic theory
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lorentz force
Mathematical analysis
Optical elements, devices, and systems
Optics
Photon momentum
Physics
Radiation pressure
Reflectors
Reflectors, beam splitters, and deflectors
Refractive index
Refractivity
Submerged
title Whence the Minkowski momentum?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whence%20the%20Minkowski%20momentum?&rft.jtitle=Optics%20communications&rft.au=Mansuripur,%20Masud&rft.date=2010-10-01&rft.volume=283&rft.issue=19&rft.spage=3557&rft.epage=3563&rft.pages=3557-3563&rft.issn=0030-4018&rft.eissn=1873-0310&rft.coden=OPCOB8&rft_id=info:doi/10.1016/j.optcom.2010.04.059&rft_dat=%3Cproquest_cross%3E901659970%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-be4f49deac4b76f4f57c0f6a67006fa50c4635c689028f7b6a7e2083f4feff123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901659970&rft_id=info:pmid/&rfr_iscdi=true