Loading…

High-capacity and security packet switching using the nonlinear effects in micro ring resonators

We propose a new design of secured packet switching generated by using nonlinear behaviors of light in a micro ring resonator. The use of chaotic signals generated by the micro ring resonator to form the filtering and packet switching characteristics is described, where the high-capacity and securit...

Full description

Saved in:
Bibliographic Details
Published in:Optik (Stuttgart) 2010, Vol.121 (2), p.159-167
Main Authors: Mitatha, S., Dejhan, K., Yupapin, P.P., Pornsuwancharoen, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a new design of secured packet switching generated by using nonlinear behaviors of light in a micro ring resonator. The use of chaotic signals generated by the micro ring resonator to form the filtering and packet switching characteristics is described, where the high-capacity and security switching using such form is presented. The key advantage is that the high capacity of communication data can be secured in the transmission link, where the nonlinear penalty of light traveling in the device is beneficial. For instance, the required information can be transmitted and retrieved by using the proposed packet switching scheme. In principle, the chaotic signals are generated by a Kerr effects nonlinear type of light in a micro ring resonator, where the control input power can be specified by the required output filtering signals. The ring radii used range between 10 and 20 μm, κ=0.0225, α=0.5 dB and n 2=2.2×10 −15 m 2/W. Simulation results obtained have been described based on the practical device parameters. Three forms of the applications have been simulated, the potential of using for the tunable band pass and band stop filters, in which high-capacity packet switching data can be performed, and the fs switching time is plausible.
ISSN:0030-4026
1618-1336
DOI:10.1016/j.ijleo.2008.05.032