Loading…

Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells

This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reductio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2011, Vol.36 (2), p.1794-1802
Main Authors: Popov, Branko N., Li, Xuguang, Liu, Gang, Lee, Jong-Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13
cites cdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13
container_end_page 1802
container_issue 2
container_start_page 1794
container_title International journal of hydrogen energy
container_volume 36
creator Popov, Branko N.
Li, Xuguang
Liu, Gang
Lee, Jong-Won
description This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm −2 as evidenced by a potential decay rate as low as 40 μV h −1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm −2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt 3Pd 1/NMCC hybrid catalyst > Pt/NMCC hybrid catalyst > conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.
doi_str_mv 10.1016/j.ijhydene.2009.12.050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901667605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909019788</els_id><sourcerecordid>901667605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</originalsourceid><addsrcrecordid>eNqFkE9v2zAMxYViBZql_QqFLsNO9vTHtqydNmTtOiDACjQ9CwpFIw7kKJOcFP72U5Bs117IAx8fH3-E3HNWcsabL9uy324mhzssBWO65KJkNbsiM94qXciqVR_IjMmGFZJrfUM-prRljCtW6RmJz-ENI03hEAFpxIQ2wobakb6-LL7SH3hEH_YD7kYaOmrd0e4AHUWPMMYAdrR-SmOiXYh0H_w0ZLPL0E8j0gGHdbQ7pN0BPQX0Pt2S6876hHeXPierx4fV4qlY_v75a_F9WUDV8rFohXatA1DOSuUEQFt3rOYVolRirRpXdUIKrao1U-tc26pRkgE0AmthuZyTz2fbfQx_DphGM_TpFCCnCYdkdGbXqIbVWdmclRBDShE7s4_9YONkODMnxGZr_iE2J8SGC5MR58VPlxM2gfVdfhT69H9bSC2k1DLrvp11mN899hhNgh5PIPuYURkX-vdO_QVOopdO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901667605</pqid></control><display><type>article</type><title>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</title><source>ScienceDirect Freedom Collection</source><creator>Popov, Branko N. ; Li, Xuguang ; Liu, Gang ; Lee, Jong-Won</creator><creatorcontrib>Popov, Branko N. ; Li, Xuguang ; Liu, Gang ; Lee, Jong-Won</creatorcontrib><description>This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm −2 as evidenced by a potential decay rate as low as 40 μV h −1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm −2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt 3Pd 1/NMCC hybrid catalyst &gt; Pt/NMCC hybrid catalyst &gt; conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.12.050</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acid leaching ; Alloy development ; Alternative fuels. Production and utilization ; Applied sciences ; Catalysis ; Catalyst ; Catalysts ; Energy ; Exact sciences and technology ; Fuel cell ; Fuel cells ; Fuels ; Hydrogen ; Platinum ; Pyrolysis ; Stability ; Support</subject><ispartof>International journal of hydrogen energy, 2011, Vol.36 (2), p.1794-1802</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</citedby><cites>FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4024,4050,4051,23930,23931,25140,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23923393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Popov, Branko N.</creatorcontrib><creatorcontrib>Li, Xuguang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lee, Jong-Won</creatorcontrib><title>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</title><title>International journal of hydrogen energy</title><description>This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm −2 as evidenced by a potential decay rate as low as 40 μV h −1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm −2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt 3Pd 1/NMCC hybrid catalyst &gt; Pt/NMCC hybrid catalyst &gt; conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.</description><subject>Acid leaching</subject><subject>Alloy development</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalyst</subject><subject>Catalysts</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Platinum</subject><subject>Pyrolysis</subject><subject>Stability</subject><subject>Support</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v2zAMxYViBZql_QqFLsNO9vTHtqydNmTtOiDACjQ9CwpFIw7kKJOcFP72U5Bs117IAx8fH3-E3HNWcsabL9uy324mhzssBWO65KJkNbsiM94qXciqVR_IjMmGFZJrfUM-prRljCtW6RmJz-ENI03hEAFpxIQ2wobakb6-LL7SH3hEH_YD7kYaOmrd0e4AHUWPMMYAdrR-SmOiXYh0H_w0ZLPL0E8j0gGHdbQ7pN0BPQX0Pt2S6876hHeXPierx4fV4qlY_v75a_F9WUDV8rFohXatA1DOSuUEQFt3rOYVolRirRpXdUIKrao1U-tc26pRkgE0AmthuZyTz2fbfQx_DphGM_TpFCCnCYdkdGbXqIbVWdmclRBDShE7s4_9YONkODMnxGZr_iE2J8SGC5MR58VPlxM2gfVdfhT69H9bSC2k1DLrvp11mN899hhNgh5PIPuYURkX-vdO_QVOopdO</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Popov, Branko N.</creator><creator>Li, Xuguang</creator><creator>Liu, Gang</creator><creator>Lee, Jong-Won</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</title><author>Popov, Branko N. ; Li, Xuguang ; Liu, Gang ; Lee, Jong-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acid leaching</topic><topic>Alloy development</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalyst</topic><topic>Catalysts</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Platinum</topic><topic>Pyrolysis</topic><topic>Stability</topic><topic>Support</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popov, Branko N.</creatorcontrib><creatorcontrib>Li, Xuguang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lee, Jong-Won</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popov, Branko N.</au><au>Li, Xuguang</au><au>Liu, Gang</au><au>Lee, Jong-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2011</date><risdate>2011</risdate><volume>36</volume><issue>2</issue><spage>1794</spage><epage>1802</epage><pages>1794-1802</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm −2 as evidenced by a potential decay rate as low as 40 μV h −1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm −2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt 3Pd 1/NMCC hybrid catalyst &gt; Pt/NMCC hybrid catalyst &gt; conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.12.050</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2011, Vol.36 (2), p.1794-1802
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_901667605
source ScienceDirect Freedom Collection
subjects Acid leaching
Alloy development
Alternative fuels. Production and utilization
Applied sciences
Catalysis
Catalyst
Catalysts
Energy
Exact sciences and technology
Fuel cell
Fuel cells
Fuels
Hydrogen
Platinum
Pyrolysis
Stability
Support
title Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20source%20research%20at%20USC:%20Development%20of%20advanced%20electrocatalysts%20for%20polymer%20electrolyte%20membrane%20fuel%20cells&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Popov,%20Branko%20N.&rft.date=2011&rft.volume=36&rft.issue=2&rft.spage=1794&rft.epage=1802&rft.pages=1794-1802&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.12.050&rft_dat=%3Cproquest_cross%3E901667605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901667605&rft_id=info:pmid/&rfr_iscdi=true