Loading…
Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells
This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reductio...
Saved in:
Published in: | International journal of hydrogen energy 2011, Vol.36 (2), p.1794-1802 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13 |
container_end_page | 1802 |
container_issue | 2 |
container_start_page | 1794 |
container_title | International journal of hydrogen energy |
container_volume | 36 |
creator | Popov, Branko N. Li, Xuguang Liu, Gang Lee, Jong-Won |
description | This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm
−2 as evidenced by a potential decay rate as low as 40 μV h
−1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm
−2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt
3Pd
1/NMCC hybrid catalyst > Pt/NMCC hybrid catalyst > conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts. |
doi_str_mv | 10.1016/j.ijhydene.2009.12.050 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901667605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909019788</els_id><sourcerecordid>901667605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</originalsourceid><addsrcrecordid>eNqFkE9v2zAMxYViBZql_QqFLsNO9vTHtqydNmTtOiDACjQ9CwpFIw7kKJOcFP72U5Bs117IAx8fH3-E3HNWcsabL9uy324mhzssBWO65KJkNbsiM94qXciqVR_IjMmGFZJrfUM-prRljCtW6RmJz-ENI03hEAFpxIQ2wobakb6-LL7SH3hEH_YD7kYaOmrd0e4AHUWPMMYAdrR-SmOiXYh0H_w0ZLPL0E8j0gGHdbQ7pN0BPQX0Pt2S6876hHeXPierx4fV4qlY_v75a_F9WUDV8rFohXatA1DOSuUEQFt3rOYVolRirRpXdUIKrao1U-tc26pRkgE0AmthuZyTz2fbfQx_DphGM_TpFCCnCYdkdGbXqIbVWdmclRBDShE7s4_9YONkODMnxGZr_iE2J8SGC5MR58VPlxM2gfVdfhT69H9bSC2k1DLrvp11mN899hhNgh5PIPuYURkX-vdO_QVOopdO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901667605</pqid></control><display><type>article</type><title>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</title><source>ScienceDirect Freedom Collection</source><creator>Popov, Branko N. ; Li, Xuguang ; Liu, Gang ; Lee, Jong-Won</creator><creatorcontrib>Popov, Branko N. ; Li, Xuguang ; Liu, Gang ; Lee, Jong-Won</creatorcontrib><description>This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm
−2 as evidenced by a potential decay rate as low as 40 μV h
−1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm
−2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt
3Pd
1/NMCC hybrid catalyst > Pt/NMCC hybrid catalyst > conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.12.050</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acid leaching ; Alloy development ; Alternative fuels. Production and utilization ; Applied sciences ; Catalysis ; Catalyst ; Catalysts ; Energy ; Exact sciences and technology ; Fuel cell ; Fuel cells ; Fuels ; Hydrogen ; Platinum ; Pyrolysis ; Stability ; Support</subject><ispartof>International journal of hydrogen energy, 2011, Vol.36 (2), p.1794-1802</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</citedby><cites>FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4024,4050,4051,23930,23931,25140,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23923393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Popov, Branko N.</creatorcontrib><creatorcontrib>Li, Xuguang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lee, Jong-Won</creatorcontrib><title>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</title><title>International journal of hydrogen energy</title><description>This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm
−2 as evidenced by a potential decay rate as low as 40 μV h
−1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm
−2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt
3Pd
1/NMCC hybrid catalyst > Pt/NMCC hybrid catalyst > conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.</description><subject>Acid leaching</subject><subject>Alloy development</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalyst</subject><subject>Catalysts</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Platinum</subject><subject>Pyrolysis</subject><subject>Stability</subject><subject>Support</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v2zAMxYViBZql_QqFLsNO9vTHtqydNmTtOiDACjQ9CwpFIw7kKJOcFP72U5Bs117IAx8fH3-E3HNWcsabL9uy324mhzssBWO65KJkNbsiM94qXciqVR_IjMmGFZJrfUM-prRljCtW6RmJz-ENI03hEAFpxIQ2wobakb6-LL7SH3hEH_YD7kYaOmrd0e4AHUWPMMYAdrR-SmOiXYh0H_w0ZLPL0E8j0gGHdbQ7pN0BPQX0Pt2S6876hHeXPierx4fV4qlY_v75a_F9WUDV8rFohXatA1DOSuUEQFt3rOYVolRirRpXdUIKrao1U-tc26pRkgE0AmthuZyTz2fbfQx_DphGM_TpFCCnCYdkdGbXqIbVWdmclRBDShE7s4_9YONkODMnxGZr_iE2J8SGC5MR58VPlxM2gfVdfhT69H9bSC2k1DLrvp11mN899hhNgh5PIPuYURkX-vdO_QVOopdO</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Popov, Branko N.</creator><creator>Li, Xuguang</creator><creator>Liu, Gang</creator><creator>Lee, Jong-Won</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</title><author>Popov, Branko N. ; Li, Xuguang ; Liu, Gang ; Lee, Jong-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acid leaching</topic><topic>Alloy development</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalyst</topic><topic>Catalysts</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Platinum</topic><topic>Pyrolysis</topic><topic>Stability</topic><topic>Support</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popov, Branko N.</creatorcontrib><creatorcontrib>Li, Xuguang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lee, Jong-Won</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popov, Branko N.</au><au>Li, Xuguang</au><au>Liu, Gang</au><au>Lee, Jong-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2011</date><risdate>2011</risdate><volume>36</volume><issue>2</issue><spage>1794</spage><epage>1802</epage><pages>1794-1802</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)–nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm
−2 as evidenced by a potential decay rate as low as 40 μV h
−1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm
−2 indicated that the Pt/NMCC hybrid catalyst (new Pt–Co/C) is more stable than the conventional Pt–Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt
3Pd
1/NMCC hybrid catalyst > Pt/NMCC hybrid catalyst > conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.12.050</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2011, Vol.36 (2), p.1794-1802 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_901667605 |
source | ScienceDirect Freedom Collection |
subjects | Acid leaching Alloy development Alternative fuels. Production and utilization Applied sciences Catalysis Catalyst Catalysts Energy Exact sciences and technology Fuel cell Fuel cells Fuels Hydrogen Platinum Pyrolysis Stability Support |
title | Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20source%20research%20at%20USC:%20Development%20of%20advanced%20electrocatalysts%20for%20polymer%20electrolyte%20membrane%20fuel%20cells&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Popov,%20Branko%20N.&rft.date=2011&rft.volume=36&rft.issue=2&rft.spage=1794&rft.epage=1802&rft.pages=1794-1802&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.12.050&rft_dat=%3Cproquest_cross%3E901667605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-829d8dcc7da37d2cc85f0514ee372b76d4f232974b07b74b846730cc62e52a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901667605&rft_id=info:pmid/&rfr_iscdi=true |