Loading…
Solution of linear systems from an optimal control problem arising in wind simulation
Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled s...
Saved in:
Published in: | Numerical linear algebra with applications 2010-12, Vol.17 (6), p.895-915 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23 |
---|---|
cites | |
container_end_page | 915 |
container_issue | 6 |
container_start_page | 895 |
container_title | Numerical linear algebra with applications |
container_volume | 17 |
creator | Benzi, M. Ferragut, L. Pennacchio, M. Simoncini, V. |
description | Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nla.679 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_901668649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896195795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKf4F_Lmg3QmTZPmPo7ppjhUmFPfQtamEk3bmbTM_XszJr76dC6cj8M9B6FzSkaUkPSqcXokcjhAA0oAEsqJONzdOUk4S_kxOgnhgxAiOLABWi5a13e2bXBbYWcboz0O29CZOuDKtzXW0Vl3ttYOF23T-dbhtW9XzkTL22Cbd2wbvLFNiYOte6d3YafoqNIumLNfHaLl9OZ5cpvMH2d3k_E8KRijkEgBVEtNyiqTuSwLyFdSr9IS0ioDxvM0k6BzkGXKCkEqAqYoK0ljixIyWaVsiC72ufGlr96ETtU2FMY53Zi2DwoIFUKKGPYfKUFQ4DnwSF7uyY11ZqvWPnb3W0WJ2s2r4rwqzqse5uMokU72tI2bff_R2n9GiuVcvT7M1PX0jTy9LJi6Zz9ojH4y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896195795</pqid></control><display><type>article</type><title>Solution of linear systems from an optimal control problem arising in wind simulation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Benzi, M. ; Ferragut, L. ; Pennacchio, M. ; Simoncini, V.</creator><creatorcontrib>Benzi, M. ; Ferragut, L. ; Pennacchio, M. ; Simoncini, V.</creatorcontrib><description>Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>ISSN: 1099-1506</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.679</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>AMG ; block preconditioning ; Blocking ; Computer simulation ; eigenvalue bounds ; Linear systems ; Mathematical analysis ; Mathematical models ; Optimal control ; Schur complement ; Solvers ; sparse direct solvers ; Strategy</subject><ispartof>Numerical linear algebra with applications, 2010-12, Vol.17 (6), p.895-915</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benzi, M.</creatorcontrib><creatorcontrib>Ferragut, L.</creatorcontrib><creatorcontrib>Pennacchio, M.</creatorcontrib><creatorcontrib>Simoncini, V.</creatorcontrib><title>Solution of linear systems from an optimal control problem arising in wind simulation</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>AMG</subject><subject>block preconditioning</subject><subject>Blocking</subject><subject>Computer simulation</subject><subject>eigenvalue bounds</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Schur complement</subject><subject>Solvers</subject><subject>sparse direct solvers</subject><subject>Strategy</subject><issn>1070-5325</issn><issn>1099-1506</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKf4F_Lmg3QmTZPmPo7ppjhUmFPfQtamEk3bmbTM_XszJr76dC6cj8M9B6FzSkaUkPSqcXokcjhAA0oAEsqJONzdOUk4S_kxOgnhgxAiOLABWi5a13e2bXBbYWcboz0O29CZOuDKtzXW0Vl3ttYOF23T-dbhtW9XzkTL22Cbd2wbvLFNiYOte6d3YafoqNIumLNfHaLl9OZ5cpvMH2d3k_E8KRijkEgBVEtNyiqTuSwLyFdSr9IS0ioDxvM0k6BzkGXKCkEqAqYoK0ljixIyWaVsiC72ufGlr96ETtU2FMY53Zi2DwoIFUKKGPYfKUFQ4DnwSF7uyY11ZqvWPnb3W0WJ2s2r4rwqzqse5uMokU72tI2bff_R2n9GiuVcvT7M1PX0jTy9LJi6Zz9ojH4y</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Benzi, M.</creator><creator>Ferragut, L.</creator><creator>Pennacchio, M.</creator><creator>Simoncini, V.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201012</creationdate><title>Solution of linear systems from an optimal control problem arising in wind simulation</title><author>Benzi, M. ; Ferragut, L. ; Pennacchio, M. ; Simoncini, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>AMG</topic><topic>block preconditioning</topic><topic>Blocking</topic><topic>Computer simulation</topic><topic>eigenvalue bounds</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Schur complement</topic><topic>Solvers</topic><topic>sparse direct solvers</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzi, M.</creatorcontrib><creatorcontrib>Ferragut, L.</creatorcontrib><creatorcontrib>Pennacchio, M.</creatorcontrib><creatorcontrib>Simoncini, V.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzi, M.</au><au>Ferragut, L.</au><au>Pennacchio, M.</au><au>Simoncini, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of linear systems from an optimal control problem arising in wind simulation</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2010-12</date><risdate>2010</risdate><volume>17</volume><issue>6</issue><spage>895</spage><epage>915</epage><pages>895-915</pages><issn>1070-5325</issn><issn>1099-1506</issn><eissn>1099-1506</eissn><abstract>Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nla.679</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2010-12, Vol.17 (6), p.895-915 |
issn | 1070-5325 1099-1506 1099-1506 |
language | eng |
recordid | cdi_proquest_miscellaneous_901668649 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | AMG block preconditioning Blocking Computer simulation eigenvalue bounds Linear systems Mathematical analysis Mathematical models Optimal control Schur complement Solvers sparse direct solvers Strategy |
title | Solution of linear systems from an optimal control problem arising in wind simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20linear%20systems%20from%20an%20optimal%20control%20problem%20arising%20in%20wind%20simulation&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Benzi,%20M.&rft.date=2010-12&rft.volume=17&rft.issue=6&rft.spage=895&rft.epage=915&rft.pages=895-915&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.679&rft_dat=%3Cproquest_wiley%3E896195795%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896195795&rft_id=info:pmid/&rfr_iscdi=true |