Loading…

Solution of linear systems from an optimal control problem arising in wind simulation

Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled s...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2010-12, Vol.17 (6), p.895-915
Main Authors: Benzi, M., Ferragut, L., Pennacchio, M., Simoncini, V.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23
cites
container_end_page 915
container_issue 6
container_start_page 895
container_title Numerical linear algebra with applications
container_volume 17
creator Benzi, M.
Ferragut, L.
Pennacchio, M.
Simoncini, V.
description Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.679
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_901668649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896195795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKf4F_Lmg3QmTZPmPo7ppjhUmFPfQtamEk3bmbTM_XszJr76dC6cj8M9B6FzSkaUkPSqcXokcjhAA0oAEsqJONzdOUk4S_kxOgnhgxAiOLABWi5a13e2bXBbYWcboz0O29CZOuDKtzXW0Vl3ttYOF23T-dbhtW9XzkTL22Cbd2wbvLFNiYOte6d3YafoqNIumLNfHaLl9OZ5cpvMH2d3k_E8KRijkEgBVEtNyiqTuSwLyFdSr9IS0ioDxvM0k6BzkGXKCkEqAqYoK0ljixIyWaVsiC72ufGlr96ETtU2FMY53Zi2DwoIFUKKGPYfKUFQ4DnwSF7uyY11ZqvWPnb3W0WJ2s2r4rwqzqse5uMokU72tI2bff_R2n9GiuVcvT7M1PX0jTy9LJi6Zz9ojH4y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896195795</pqid></control><display><type>article</type><title>Solution of linear systems from an optimal control problem arising in wind simulation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Benzi, M. ; Ferragut, L. ; Pennacchio, M. ; Simoncini, V.</creator><creatorcontrib>Benzi, M. ; Ferragut, L. ; Pennacchio, M. ; Simoncini, V.</creatorcontrib><description>Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>ISSN: 1099-1506</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.679</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>AMG ; block preconditioning ; Blocking ; Computer simulation ; eigenvalue bounds ; Linear systems ; Mathematical analysis ; Mathematical models ; Optimal control ; Schur complement ; Solvers ; sparse direct solvers ; Strategy</subject><ispartof>Numerical linear algebra with applications, 2010-12, Vol.17 (6), p.895-915</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benzi, M.</creatorcontrib><creatorcontrib>Ferragut, L.</creatorcontrib><creatorcontrib>Pennacchio, M.</creatorcontrib><creatorcontrib>Simoncini, V.</creatorcontrib><title>Solution of linear systems from an optimal control problem arising in wind simulation</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>AMG</subject><subject>block preconditioning</subject><subject>Blocking</subject><subject>Computer simulation</subject><subject>eigenvalue bounds</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Schur complement</subject><subject>Solvers</subject><subject>sparse direct solvers</subject><subject>Strategy</subject><issn>1070-5325</issn><issn>1099-1506</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKf4F_Lmg3QmTZPmPo7ppjhUmFPfQtamEk3bmbTM_XszJr76dC6cj8M9B6FzSkaUkPSqcXokcjhAA0oAEsqJONzdOUk4S_kxOgnhgxAiOLABWi5a13e2bXBbYWcboz0O29CZOuDKtzXW0Vl3ttYOF23T-dbhtW9XzkTL22Cbd2wbvLFNiYOte6d3YafoqNIumLNfHaLl9OZ5cpvMH2d3k_E8KRijkEgBVEtNyiqTuSwLyFdSr9IS0ioDxvM0k6BzkGXKCkEqAqYoK0ljixIyWaVsiC72ufGlr96ETtU2FMY53Zi2DwoIFUKKGPYfKUFQ4DnwSF7uyY11ZqvWPnb3W0WJ2s2r4rwqzqse5uMokU72tI2bff_R2n9GiuVcvT7M1PX0jTy9LJi6Zz9ojH4y</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Benzi, M.</creator><creator>Ferragut, L.</creator><creator>Pennacchio, M.</creator><creator>Simoncini, V.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201012</creationdate><title>Solution of linear systems from an optimal control problem arising in wind simulation</title><author>Benzi, M. ; Ferragut, L. ; Pennacchio, M. ; Simoncini, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>AMG</topic><topic>block preconditioning</topic><topic>Blocking</topic><topic>Computer simulation</topic><topic>eigenvalue bounds</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Schur complement</topic><topic>Solvers</topic><topic>sparse direct solvers</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzi, M.</creatorcontrib><creatorcontrib>Ferragut, L.</creatorcontrib><creatorcontrib>Pennacchio, M.</creatorcontrib><creatorcontrib>Simoncini, V.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzi, M.</au><au>Ferragut, L.</au><au>Pennacchio, M.</au><au>Simoncini, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of linear systems from an optimal control problem arising in wind simulation</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2010-12</date><risdate>2010</risdate><volume>17</volume><issue>6</issue><spage>895</spage><epage>915</epage><pages>895-915</pages><issn>1070-5325</issn><issn>1099-1506</issn><eissn>1099-1506</eissn><abstract>Several solution strategies for a class of large, sparse linear systems with a block 2 × 2 structure arising from the finite element discretization of an optimal control problem in wind simulation are introduced and analyzed. Block preconditioners and a sparse direct solver on the original coupled system are compared with a preconditioned GMRES iteration applied to a reduced system (Schur complement). Theoretical and experimental results demonstrate the effectiveness of the reduced system approach. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nla.679</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2010-12, Vol.17 (6), p.895-915
issn 1070-5325
1099-1506
1099-1506
language eng
recordid cdi_proquest_miscellaneous_901668649
source Wiley-Blackwell Read & Publish Collection
subjects AMG
block preconditioning
Blocking
Computer simulation
eigenvalue bounds
Linear systems
Mathematical analysis
Mathematical models
Optimal control
Schur complement
Solvers
sparse direct solvers
Strategy
title Solution of linear systems from an optimal control problem arising in wind simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20linear%20systems%20from%20an%20optimal%20control%20problem%20arising%20in%20wind%20simulation&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Benzi,%20M.&rft.date=2010-12&rft.volume=17&rft.issue=6&rft.spage=895&rft.epage=915&rft.pages=895-915&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.679&rft_dat=%3Cproquest_wiley%3E896195795%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3319-8691a8a0df4878dc97b8ab2d92f493572489a798d23c60f09ecdf81325d948f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896195795&rft_id=info:pmid/&rfr_iscdi=true