Loading…
Small-scale hydrogen liquefaction with a two-stage Gifford–McMahon cycle refrigerator
We manufactured a small-scale hydrogen liquefier with a two-stage 10 K Gifford–McMahon cycle (GM) refrigerator. It had a hydrogen tank with the volume of 30 L that was surrounded by a radiation shield. This liquefier continuously liquefied gaseous hydrogen with the volumetric flow rate of 12.1 NL/mi...
Saved in:
Published in: | International journal of hydrogen energy 2010-09, Vol.35 (17), p.9088-9094 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We manufactured a small-scale hydrogen liquefier with a two-stage 10 K Gifford–McMahon cycle (GM) refrigerator. It had a hydrogen tank with the volume of 30 L that was surrounded by a radiation shield. This liquefier continuously liquefied gaseous hydrogen with the volumetric flow rate of 12.1 NL/min. It corresponds to the liquefaction rate of 19.9 L/day for liquid hydrogen. We proposed a simple estimation method for the liquefaction rate and confirmed that the estimation method well explained the experimental result. To evaluate the estimation method, we applied the estimation method to other liquefiers. In case of a liquefier with the GM refrigerator, we confirmed the estimation method was available for predicting the liquefaction rate. However, in case of a liquefier with the pulse tube refrigerator, the results of the estimation indicated small values as compared with the experimental data. We discuss the details about the estimation method of the liquefaction rate for the small-scale liquefiers. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2010.05.104 |