Loading…
Simple form of the stationary distribution for 3D cellular automata in a special case
3D cellular automata can be analyzed by means of finite homogeneous Markov chains. If the automaton is allowed to change only one cell per iteration, and the transition probability depends linearly on the number of ones in the neighborhood, the Markov chain has two attractors at all zeroes and all o...
Saved in:
Published in: | Physica A 2010-07, Vol.389 (13), p.2495-2499 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-18f4458b7e7af06a85a04442e4512c3a1ba6158845f06dbf5dd34cfc9d16d4ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-18f4458b7e7af06a85a04442e4512c3a1ba6158845f06dbf5dd34cfc9d16d4ad3 |
container_end_page | 2499 |
container_issue | 13 |
container_start_page | 2495 |
container_title | Physica A |
container_volume | 389 |
creator | Agapie, Alexandru |
description | 3D cellular automata can be analyzed by means of finite homogeneous Markov chains. If the automaton is allowed to change only one cell per iteration, and the transition probability depends linearly on the number of ones in the neighborhood, the Markov chain has two attractors at
all zeroes and
all ones. Otherwise–and this is the case we tackle–the chain is ergodic, thus allowing for the search of stationary distributions. This proves cumbersome in the general case, still, under detailed balance equation, the stationary distribution can be derived in closed form. The probability of a particular state is found to be exponential in the number of
zero–one borders within the configuration. |
doi_str_mv | 10.1016/j.physa.2010.03.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901672294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437110002153</els_id><sourcerecordid>901672294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-18f4458b7e7af06a85a04442e4512c3a1ba6158845f06dbf5dd34cfc9d16d4ad3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvCF9C4o0qwY-dVUKDlKa1EAVtbEz-0XiVxsB0k_h6HpaYazcy9o7kHoWtKckpodXvIp_13gLwgaUJYTig9QSva1CwrKG1P0Yqwusk4q-k5ugjhQAihNStWaPduh6nX2Dg_YGdw3GscIkTrRvDfWNkQve3mpV80mD1gqft-7sFjmKMbIAK2IwYcJi0t9FhC0JfozEAf9NVfXaPd0-PH5iXbvj2_bu63mWSsjBltDOdl09W6BkMqaEognPNC85IWkgHtoKJl0_AybVVnSqUYl0a2ilaKg2JrdHO8O3n3OesQxWDD8h-M2s1BtAlOXRQtT0p2VErvQvDaiMnbIUUUlIiFoTiIX4ZiYSgIE4lhct0dXTqF-LLaiyCtHqVW1msZhXL2X_8PA0p72g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901672294</pqid></control><display><type>article</type><title>Simple form of the stationary distribution for 3D cellular automata in a special case</title><source>ScienceDirect Freedom Collection</source><creator>Agapie, Alexandru</creator><creatorcontrib>Agapie, Alexandru</creatorcontrib><description>3D cellular automata can be analyzed by means of finite homogeneous Markov chains. If the automaton is allowed to change only one cell per iteration, and the transition probability depends linearly on the number of ones in the neighborhood, the Markov chain has two attractors at
all zeroes and
all ones. Otherwise–and this is the case we tackle–the chain is ergodic, thus allowing for the search of stationary distributions. This proves cumbersome in the general case, still, under detailed balance equation, the stationary distribution can be derived in closed form. The probability of a particular state is found to be exponential in the number of
zero–one borders within the configuration.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2010.03.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Borders ; Cellular automata ; Chains ; Exact solutions ; Finite homogeneous Markov chain ; Interacting particle system ; Ising model ; Markov chains ; Mathematical analysis ; Statistical mechanics ; Three dimensional ; Voter model</subject><ispartof>Physica A, 2010-07, Vol.389 (13), p.2495-2499</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-18f4458b7e7af06a85a04442e4512c3a1ba6158845f06dbf5dd34cfc9d16d4ad3</citedby><cites>FETCH-LOGICAL-c335t-18f4458b7e7af06a85a04442e4512c3a1ba6158845f06dbf5dd34cfc9d16d4ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Agapie, Alexandru</creatorcontrib><title>Simple form of the stationary distribution for 3D cellular automata in a special case</title><title>Physica A</title><description>3D cellular automata can be analyzed by means of finite homogeneous Markov chains. If the automaton is allowed to change only one cell per iteration, and the transition probability depends linearly on the number of ones in the neighborhood, the Markov chain has two attractors at
all zeroes and
all ones. Otherwise–and this is the case we tackle–the chain is ergodic, thus allowing for the search of stationary distributions. This proves cumbersome in the general case, still, under detailed balance equation, the stationary distribution can be derived in closed form. The probability of a particular state is found to be exponential in the number of
zero–one borders within the configuration.</description><subject>Borders</subject><subject>Cellular automata</subject><subject>Chains</subject><subject>Exact solutions</subject><subject>Finite homogeneous Markov chain</subject><subject>Interacting particle system</subject><subject>Ising model</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Statistical mechanics</subject><subject>Three dimensional</subject><subject>Voter model</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvCF9C4o0qwY-dVUKDlKa1EAVtbEz-0XiVxsB0k_h6HpaYazcy9o7kHoWtKckpodXvIp_13gLwgaUJYTig9QSva1CwrKG1P0Yqwusk4q-k5ugjhQAihNStWaPduh6nX2Dg_YGdw3GscIkTrRvDfWNkQve3mpV80mD1gqft-7sFjmKMbIAK2IwYcJi0t9FhC0JfozEAf9NVfXaPd0-PH5iXbvj2_bu63mWSsjBltDOdl09W6BkMqaEognPNC85IWkgHtoKJl0_AybVVnSqUYl0a2ilaKg2JrdHO8O3n3OesQxWDD8h-M2s1BtAlOXRQtT0p2VErvQvDaiMnbIUUUlIiFoTiIX4ZiYSgIE4lhct0dXTqF-LLaiyCtHqVW1msZhXL2X_8PA0p72g</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Agapie, Alexandru</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Simple form of the stationary distribution for 3D cellular automata in a special case</title><author>Agapie, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-18f4458b7e7af06a85a04442e4512c3a1ba6158845f06dbf5dd34cfc9d16d4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Borders</topic><topic>Cellular automata</topic><topic>Chains</topic><topic>Exact solutions</topic><topic>Finite homogeneous Markov chain</topic><topic>Interacting particle system</topic><topic>Ising model</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Statistical mechanics</topic><topic>Three dimensional</topic><topic>Voter model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agapie, Alexandru</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agapie, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple form of the stationary distribution for 3D cellular automata in a special case</atitle><jtitle>Physica A</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>389</volume><issue>13</issue><spage>2495</spage><epage>2499</epage><pages>2495-2499</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>3D cellular automata can be analyzed by means of finite homogeneous Markov chains. If the automaton is allowed to change only one cell per iteration, and the transition probability depends linearly on the number of ones in the neighborhood, the Markov chain has two attractors at
all zeroes and
all ones. Otherwise–and this is the case we tackle–the chain is ergodic, thus allowing for the search of stationary distributions. This proves cumbersome in the general case, still, under detailed balance equation, the stationary distribution can be derived in closed form. The probability of a particular state is found to be exponential in the number of
zero–one borders within the configuration.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2010.03.011</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4371 |
ispartof | Physica A, 2010-07, Vol.389 (13), p.2495-2499 |
issn | 0378-4371 1873-2119 |
language | eng |
recordid | cdi_proquest_miscellaneous_901672294 |
source | ScienceDirect Freedom Collection |
subjects | Borders Cellular automata Chains Exact solutions Finite homogeneous Markov chain Interacting particle system Ising model Markov chains Mathematical analysis Statistical mechanics Three dimensional Voter model |
title | Simple form of the stationary distribution for 3D cellular automata in a special case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20form%20of%20the%20stationary%20distribution%20for%203D%20cellular%20automata%20in%20a%20special%20case&rft.jtitle=Physica%20A&rft.au=Agapie,%20Alexandru&rft.date=2010-07-01&rft.volume=389&rft.issue=13&rft.spage=2495&rft.epage=2499&rft.pages=2495-2499&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2010.03.011&rft_dat=%3Cproquest_cross%3E901672294%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-18f4458b7e7af06a85a04442e4512c3a1ba6158845f06dbf5dd34cfc9d16d4ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901672294&rft_id=info:pmid/&rfr_iscdi=true |