Loading…

Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots

Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard pa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemometrics 2010-07, Vol.24 (7-8), p.496-504
Main Author: Kvalheim, Olav M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863
cites cdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863
container_end_page 504
container_issue 7-8
container_start_page 496
container_title Journal of chemometrics
container_volume 24
creator Kvalheim, Olav M.
description Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley & Sons, Ltd. The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors.
doi_str_mv 10.1002/cem.1289
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901673208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128644081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</originalsourceid><addsrcrecordid>eNp1kFtr3DAQRkVoIds0kJ8gAqV5cSpbtlZ6LEuShm5zgZb2TczK4-CtfIlGm2T_feXukodCn0aXozOjj7GTXJznQhSfHHbneaHNAZvlwpgsrX-9YTOhtcqM1PKQvSNaC5HuZDljdN1HDGPACLEdej40fIQQW_DcI1Dk9LiBgMQDPqRCE9MNNXriqy3vEHqa3kQIDxj5GIY1ur8i6GtO6KfdUxu3PEx-Pvoh0nv2tgFPeLyvR-zH5cX3xZdseXt1vfi8zFxZaZOBU41czUtXgi6EBDCqWVVK1bUQZZNOpROgpYYKmlpBpVBjpQtQzsnaaCWP2MedN431uEGKtmvJoffQ47Aha0Su5rIQOpGn_5DrYRP6NJydl0aq3KgiQWc7yIWBKGBjx9B2ELY2F3bK3qbs7ZR9Qj_sfUAOfBOgdy298kVqWspKJC7bcc-tx-1_fXZx8W3v3fMtRXx55SH8tukn88r-vLmy1d3i693y_tIa-Qckm6PO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749361962</pqid></control><display><type>article</type><title>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kvalheim, Olav M.</creator><creatorcontrib>Kvalheim, Olav M.</creatorcontrib><description>Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley &amp; Sons, Ltd. The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors.</description><identifier>ISSN: 0886-9383</identifier><identifier>ISSN: 1099-128X</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1289</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Chemistry ; Displays ; Equivalence ; Exact sciences and technology ; General and physical chemistry ; General. Nomenclature, chemical documentation, computer chemistry ; Least squares method ; Mathematical models ; Measurement ; model interpretation ; Parameter estimation ; partial least squares ; Projection ; Regression ; Regression analysis ; Selectivity ; target projection ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; variable selection ; Variables</subject><ispartof>Journal of chemometrics, 2010-07, Vol.24 (7-8), p.496-504</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jul/Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</citedby><cites>FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23204350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kvalheim, Olav M.</creatorcontrib><title>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley &amp; Sons, Ltd. The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors.</description><subject>Chemistry</subject><subject>Displays</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Nomenclature, chemical documentation, computer chemistry</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>model interpretation</subject><subject>Parameter estimation</subject><subject>partial least squares</subject><subject>Projection</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Selectivity</subject><subject>target projection</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>variable selection</subject><subject>Variables</subject><issn>0886-9383</issn><issn>1099-128X</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kFtr3DAQRkVoIds0kJ8gAqV5cSpbtlZ6LEuShm5zgZb2TczK4-CtfIlGm2T_feXukodCn0aXozOjj7GTXJznQhSfHHbneaHNAZvlwpgsrX-9YTOhtcqM1PKQvSNaC5HuZDljdN1HDGPACLEdej40fIQQW_DcI1Dk9LiBgMQDPqRCE9MNNXriqy3vEHqa3kQIDxj5GIY1ur8i6GtO6KfdUxu3PEx-Pvoh0nv2tgFPeLyvR-zH5cX3xZdseXt1vfi8zFxZaZOBU41czUtXgi6EBDCqWVVK1bUQZZNOpROgpYYKmlpBpVBjpQtQzsnaaCWP2MedN431uEGKtmvJoffQ47Aha0Su5rIQOpGn_5DrYRP6NJydl0aq3KgiQWc7yIWBKGBjx9B2ELY2F3bK3qbs7ZR9Qj_sfUAOfBOgdy298kVqWspKJC7bcc-tx-1_fXZx8W3v3fMtRXx55SH8tukn88r-vLmy1d3i693y_tIa-Qckm6PO</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Kvalheim, Olav M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201007</creationdate><title>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</title><author>Kvalheim, Olav M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Displays</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Nomenclature, chemical documentation, computer chemistry</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>model interpretation</topic><topic>Parameter estimation</topic><topic>partial least squares</topic><topic>Projection</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Selectivity</topic><topic>target projection</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>variable selection</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kvalheim, Olav M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kvalheim, Olav M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2010-07</date><risdate>2010</risdate><volume>24</volume><issue>7-8</issue><spage>496</spage><epage>504</epage><pages>496-504</pages><issn>0886-9383</issn><issn>1099-128X</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley &amp; Sons, Ltd. The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cem.1289</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2010-07, Vol.24 (7-8), p.496-504
issn 0886-9383
1099-128X
1099-128X
language eng
recordid cdi_proquest_miscellaneous_901673208
source Wiley-Blackwell Read & Publish Collection
subjects Chemistry
Displays
Equivalence
Exact sciences and technology
General and physical chemistry
General. Nomenclature, chemical documentation, computer chemistry
Least squares method
Mathematical models
Measurement
model interpretation
Parameter estimation
partial least squares
Projection
Regression
Regression analysis
Selectivity
target projection
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
variable selection
Variables
title Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretation%20of%20partial%20least%20squares%20regression%20models%20by%20means%20of%20target%20projection%20and%20selectivity%20ratio%20plots&rft.jtitle=Journal%20of%20chemometrics&rft.au=Kvalheim,%20Olav%20M.&rft.date=2010-07&rft.volume=24&rft.issue=7-8&rft.spage=496&rft.epage=504&rft.pages=496-504&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.1289&rft_dat=%3Cproquest_cross%3E2128644081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749361962&rft_id=info:pmid/&rfr_iscdi=true