Loading…
Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots
Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard pa...
Saved in:
Published in: | Journal of chemometrics 2010-07, Vol.24 (7-8), p.496-504 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863 |
---|---|
cites | cdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863 |
container_end_page | 504 |
container_issue | 7-8 |
container_start_page | 496 |
container_title | Journal of chemometrics |
container_volume | 24 |
creator | Kvalheim, Olav M. |
description | Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley & Sons, Ltd.
The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors. |
doi_str_mv | 10.1002/cem.1289 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901673208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128644081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</originalsourceid><addsrcrecordid>eNp1kFtr3DAQRkVoIds0kJ8gAqV5cSpbtlZ6LEuShm5zgZb2TczK4-CtfIlGm2T_feXukodCn0aXozOjj7GTXJznQhSfHHbneaHNAZvlwpgsrX-9YTOhtcqM1PKQvSNaC5HuZDljdN1HDGPACLEdej40fIQQW_DcI1Dk9LiBgMQDPqRCE9MNNXriqy3vEHqa3kQIDxj5GIY1ur8i6GtO6KfdUxu3PEx-Pvoh0nv2tgFPeLyvR-zH5cX3xZdseXt1vfi8zFxZaZOBU41czUtXgi6EBDCqWVVK1bUQZZNOpROgpYYKmlpBpVBjpQtQzsnaaCWP2MedN431uEGKtmvJoffQ47Aha0Su5rIQOpGn_5DrYRP6NJydl0aq3KgiQWc7yIWBKGBjx9B2ELY2F3bK3qbs7ZR9Qj_sfUAOfBOgdy298kVqWspKJC7bcc-tx-1_fXZx8W3v3fMtRXx55SH8tukn88r-vLmy1d3i693y_tIa-Qckm6PO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749361962</pqid></control><display><type>article</type><title>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kvalheim, Olav M.</creator><creatorcontrib>Kvalheim, Olav M.</creatorcontrib><description>Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley & Sons, Ltd.
The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors.</description><identifier>ISSN: 0886-9383</identifier><identifier>ISSN: 1099-128X</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1289</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Chemistry ; Displays ; Equivalence ; Exact sciences and technology ; General and physical chemistry ; General. Nomenclature, chemical documentation, computer chemistry ; Least squares method ; Mathematical models ; Measurement ; model interpretation ; Parameter estimation ; partial least squares ; Projection ; Regression ; Regression analysis ; Selectivity ; target projection ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; variable selection ; Variables</subject><ispartof>Journal of chemometrics, 2010-07, Vol.24 (7-8), p.496-504</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jul/Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</citedby><cites>FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23204350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kvalheim, Olav M.</creatorcontrib><title>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley & Sons, Ltd.
The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors.</description><subject>Chemistry</subject><subject>Displays</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Nomenclature, chemical documentation, computer chemistry</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>model interpretation</subject><subject>Parameter estimation</subject><subject>partial least squares</subject><subject>Projection</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Selectivity</subject><subject>target projection</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>variable selection</subject><subject>Variables</subject><issn>0886-9383</issn><issn>1099-128X</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kFtr3DAQRkVoIds0kJ8gAqV5cSpbtlZ6LEuShm5zgZb2TczK4-CtfIlGm2T_feXukodCn0aXozOjj7GTXJznQhSfHHbneaHNAZvlwpgsrX-9YTOhtcqM1PKQvSNaC5HuZDljdN1HDGPACLEdej40fIQQW_DcI1Dk9LiBgMQDPqRCE9MNNXriqy3vEHqa3kQIDxj5GIY1ur8i6GtO6KfdUxu3PEx-Pvoh0nv2tgFPeLyvR-zH5cX3xZdseXt1vfi8zFxZaZOBU41czUtXgi6EBDCqWVVK1bUQZZNOpROgpYYKmlpBpVBjpQtQzsnaaCWP2MedN431uEGKtmvJoffQ47Aha0Su5rIQOpGn_5DrYRP6NJydl0aq3KgiQWc7yIWBKGBjx9B2ELY2F3bK3qbs7ZR9Qj_sfUAOfBOgdy298kVqWspKJC7bcc-tx-1_fXZx8W3v3fMtRXx55SH8tukn88r-vLmy1d3i693y_tIa-Qckm6PO</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Kvalheim, Olav M.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201007</creationdate><title>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</title><author>Kvalheim, Olav M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Displays</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Nomenclature, chemical documentation, computer chemistry</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>model interpretation</topic><topic>Parameter estimation</topic><topic>partial least squares</topic><topic>Projection</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Selectivity</topic><topic>target projection</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>variable selection</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kvalheim, Olav M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kvalheim, Olav M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2010-07</date><risdate>2010</risdate><volume>24</volume><issue>7-8</issue><spage>496</spage><epage>504</epage><pages>496-504</pages><issn>0886-9383</issn><issn>1099-128X</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>Displays of latent variable regression models in variable and object space are provided to reveal model parameters useful for interpretation and to reveal the most influential x‐variables with respect to the predicted response. Although the target projected (TP) component obtained from a standard partial least square, or equivalently, the predictive component from orthogonal partial least squares (OPLS) or partial least squares + similarity transform (PLS + ST) is maximally co‐varying with the response, the corresponding loadings are not necessarily the best choice for model interpretation and disclosure of the most important variables with respect to explaining the response. Selectivity ratio plot represents a bridge from co‐variance‐based TP loadings to correlation‐like localized information suitable for interpretation. Copyright © 2010 John Wiley & Sons, Ltd.
The usefulness of the partial least squares (PLS) weight vector, the predictive target projected (TP) component and the regression vector for model interpretation is assessed and the information content in these vectors is compared with the vector of the correlation‐like selectivity ratios. The conclusion is that the selectivity ratios displayed with the sign of the corresponding TP loadings represent a more reliable presentation for revealing the most influential x‐variables in a regression model than the traditional PLS vectors.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cem.1289</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2010-07, Vol.24 (7-8), p.496-504 |
issn | 0886-9383 1099-128X 1099-128X |
language | eng |
recordid | cdi_proquest_miscellaneous_901673208 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Chemistry Displays Equivalence Exact sciences and technology General and physical chemistry General. Nomenclature, chemical documentation, computer chemistry Least squares method Mathematical models Measurement model interpretation Parameter estimation partial least squares Projection Regression Regression analysis Selectivity target projection Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry variable selection Variables |
title | Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretation%20of%20partial%20least%20squares%20regression%20models%20by%20means%20of%20target%20projection%20and%20selectivity%20ratio%20plots&rft.jtitle=Journal%20of%20chemometrics&rft.au=Kvalheim,%20Olav%20M.&rft.date=2010-07&rft.volume=24&rft.issue=7-8&rft.spage=496&rft.epage=504&rft.pages=496-504&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.1289&rft_dat=%3Cproquest_cross%3E2128644081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4589-ac6f3b74c4a8203aa96fb566dd004fc4a3c0a838a5afd6a56e8e582a6cc3d9863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749361962&rft_id=info:pmid/&rfr_iscdi=true |