Loading…

Corrugated quantum well infrared photodetectors for far infrared detection

We have extended our investigation of corrugated quantum well infrared photodetector focal plane arrays (FPAs) into the far infrared regime. Specifically, we are developing the detectors for the thermal infrared sensor (TIRS) used in the Landsat Data Continuity Mission. To maintain a low dark curren...

Full description

Saved in:
Bibliographic Details
Published in:Optical Engineering 2011-06, Vol.50 (6), p.061005-061005
Main Authors: Choi, Kwong-Kit, Sun, Jason, Jhabvala, Merzy D, Forrai, David P, Endres, Darrel W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have extended our investigation of corrugated quantum well infrared photodetector focal plane arrays (FPAs) into the far infrared regime. Specifically, we are developing the detectors for the thermal infrared sensor (TIRS) used in the Landsat Data Continuity Mission. To maintain a low dark current, we adopted a low doping density of 0.6×10 cm and a bound-to-bound state detector. The internal absorption quantum efficiency (QE) is calculated to be 25.4%. With a pixel fill factor of 80% and a substrate transmission of 70.9%, the external QE is 14.4%. To yield the theoretical conversion efficiency (CE), the photoconductive gain was measured and is 0.25 at 5 V, from which CE is predicted to be 3.6%. This value is in agreement with the 3.5% from the FPA measurement. Meanwhile, the dark current is measured to be 2.1×10 A/cm at 43 K. For regular infrared imaging above 8 m, the FPA will have an noise equivalent temperature difference (NETD) of 16 mK at 2 ms integration time in the presence of 260 read noise electrons. The highest operability of the tested FPAs is 99.967%. With the CE agreement, we project the FPA performance in the far infrared regime up to 30 m cutoff.
ISSN:0091-3286
1560-2303
1560-2303
DOI:10.1117/1.3578406