Loading…

Real-time reconfigurable linear threshold elements implemented in floating-gate CMOS

This paper describes using theory, computer simulations, and laboratory measurements a new class of real-time reconfigurable UV-programmable floating-gate (FGUVMOS) linear threshold elements operating with current levels typically in the pA to /spl mu/A range, in standard double-poly 0.6 /spl mu/m C...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2003-09, Vol.14 (5), p.1244-1256
Main Authors: Aunet, S., Berg, Y., Saether, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e541dbf816d8a7cc3566d24656e1d9e09cd71a1226b518b0aa20abaeffa307db3
cites cdi_FETCH-LOGICAL-c319t-e541dbf816d8a7cc3566d24656e1d9e09cd71a1226b518b0aa20abaeffa307db3
container_end_page 1256
container_issue 5
container_start_page 1244
container_title IEEE transaction on neural networks and learning systems
container_volume 14
creator Aunet, S.
Berg, Y.
Saether, T.
description This paper describes using theory, computer simulations, and laboratory measurements a new class of real-time reconfigurable UV-programmable floating-gate (FGUVMOS) linear threshold elements operating with current levels typically in the pA to /spl mu/A range, in standard double-poly 0.6 /spl mu/m CMOS, providing an ultra low-power potential. A new design method based on using the same basic two-MOSFET circuits extensively is proposed, meant for improving the opportunities to make larger FGUVMOS circuitry than previously reported. By using the same basic circuitry extensively, instead of different circuitry for basic digital functions, the goal is to ease UV-programming and test and save circuitry on chip and I-O-pads. Matching of circuitry should also be improved by using this approach. Compact circuitry can be made, reducing wiring and active components compared to previously reported FGUVMOS. 2-MOSFET circuits able to implement CARRY, NOR, NAND, and INVERT functions are demonstrated by measurements on chip, working with power supply voltages ranging from 800 mV down to 93 mV. The basic linear threshold element proposed is considered as a potential basic building block in neural networks.
doi_str_mv 10.1109/TNN.2003.816351
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_901681005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1243724</ieee_id><sourcerecordid>901681005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e541dbf816d8a7cc3566d24656e1d9e09cd71a1226b518b0aa20abaeffa307db3</originalsourceid><addsrcrecordid>eNqF0U1r3DAQBmBRWpo07bmHQjE9tCdvZvRhW8ew9AvSBNrtWcjWeKMg21vJPuTfR8ELgR6Sg5iBeTRIvIy9R9gggj7fXV1tOIDYNFgJhS_YKWqJJYAWL3MPUpWa8_qEvUnpFgClguo1O8GGS6lqecp2v8mGcvYDFZG6aez9fom2DVQEP5KNxXwTKd1MwRUUaKBxToUfDmtLrvBj0YfJzn7cl3s7U7H9df3nLXvV25Do3bGesb_fvu62P8rL6-8_txeXZSdQzyUpia7t89NdY-uuE6qqHJeVqgidJtCdq9Ei51WrsGnBWg62tdT3VkDtWnHGvqx7D3H6t1CazeBTRyHYkaYlGQ1YNQignpW1kFyB4DzLz09K3ihVZ5fhp__g7bTEMf_XaA5NLaCRGZ2vqItTSpF6c4h-sPHOIJiHBE1O0DwkaNYE842Px7VLO5B79MfIMviwAk9Ej2MuRZ3PPUxznl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920873084</pqid></control><display><type>article</type><title>Real-time reconfigurable linear threshold elements implemented in floating-gate CMOS</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Aunet, S. ; Berg, Y. ; Saether, T.</creator><creatorcontrib>Aunet, S. ; Berg, Y. ; Saether, T.</creatorcontrib><description>This paper describes using theory, computer simulations, and laboratory measurements a new class of real-time reconfigurable UV-programmable floating-gate (FGUVMOS) linear threshold elements operating with current levels typically in the pA to /spl mu/A range, in standard double-poly 0.6 /spl mu/m CMOS, providing an ultra low-power potential. A new design method based on using the same basic two-MOSFET circuits extensively is proposed, meant for improving the opportunities to make larger FGUVMOS circuitry than previously reported. By using the same basic circuitry extensively, instead of different circuitry for basic digital functions, the goal is to ease UV-programming and test and save circuitry on chip and I-O-pads. Matching of circuitry should also be improved by using this approach. Compact circuitry can be made, reducing wiring and active components compared to previously reported FGUVMOS. 2-MOSFET circuits able to implement CARRY, NOR, NAND, and INVERT functions are demonstrated by measurements on chip, working with power supply voltages ranging from 800 mV down to 93 mV. The basic linear threshold element proposed is considered as a potential basic building block in neural networks.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2003.816351</identifier><identifier>PMID: 18244574</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Chips ; Circuit testing ; CMOS ; Computer simulation ; Current measurement ; Design methodology ; Electric circuits ; Laboratories ; Mathematical analysis ; Mathematical models ; Measurement standards ; Neural networks ; Power measurement ; Power supplies ; Semiconductor device measurement ; Thresholds ; Wiring</subject><ispartof>IEEE transaction on neural networks and learning systems, 2003-09, Vol.14 (5), p.1244-1256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e541dbf816d8a7cc3566d24656e1d9e09cd71a1226b518b0aa20abaeffa307db3</citedby><cites>FETCH-LOGICAL-c319t-e541dbf816d8a7cc3566d24656e1d9e09cd71a1226b518b0aa20abaeffa307db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1243724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aunet, S.</creatorcontrib><creatorcontrib>Berg, Y.</creatorcontrib><creatorcontrib>Saether, T.</creatorcontrib><title>Real-time reconfigurable linear threshold elements implemented in floating-gate CMOS</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This paper describes using theory, computer simulations, and laboratory measurements a new class of real-time reconfigurable UV-programmable floating-gate (FGUVMOS) linear threshold elements operating with current levels typically in the pA to /spl mu/A range, in standard double-poly 0.6 /spl mu/m CMOS, providing an ultra low-power potential. A new design method based on using the same basic two-MOSFET circuits extensively is proposed, meant for improving the opportunities to make larger FGUVMOS circuitry than previously reported. By using the same basic circuitry extensively, instead of different circuitry for basic digital functions, the goal is to ease UV-programming and test and save circuitry on chip and I-O-pads. Matching of circuitry should also be improved by using this approach. Compact circuitry can be made, reducing wiring and active components compared to previously reported FGUVMOS. 2-MOSFET circuits able to implement CARRY, NOR, NAND, and INVERT functions are demonstrated by measurements on chip, working with power supply voltages ranging from 800 mV down to 93 mV. The basic linear threshold element proposed is considered as a potential basic building block in neural networks.</description><subject>Chips</subject><subject>Circuit testing</subject><subject>CMOS</subject><subject>Computer simulation</subject><subject>Current measurement</subject><subject>Design methodology</subject><subject>Electric circuits</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement standards</subject><subject>Neural networks</subject><subject>Power measurement</subject><subject>Power supplies</subject><subject>Semiconductor device measurement</subject><subject>Thresholds</subject><subject>Wiring</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0U1r3DAQBmBRWpo07bmHQjE9tCdvZvRhW8ew9AvSBNrtWcjWeKMg21vJPuTfR8ELgR6Sg5iBeTRIvIy9R9gggj7fXV1tOIDYNFgJhS_YKWqJJYAWL3MPUpWa8_qEvUnpFgClguo1O8GGS6lqecp2v8mGcvYDFZG6aez9fom2DVQEP5KNxXwTKd1MwRUUaKBxToUfDmtLrvBj0YfJzn7cl3s7U7H9df3nLXvV25Do3bGesb_fvu62P8rL6-8_txeXZSdQzyUpia7t89NdY-uuE6qqHJeVqgidJtCdq9Ei51WrsGnBWg62tdT3VkDtWnHGvqx7D3H6t1CazeBTRyHYkaYlGQ1YNQignpW1kFyB4DzLz09K3ihVZ5fhp__g7bTEMf_XaA5NLaCRGZ2vqItTSpF6c4h-sPHOIJiHBE1O0DwkaNYE842Px7VLO5B79MfIMviwAk9Ej2MuRZ3PPUxznl4</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Aunet, S.</creator><creator>Berg, Y.</creator><creator>Saether, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200309</creationdate><title>Real-time reconfigurable linear threshold elements implemented in floating-gate CMOS</title><author>Aunet, S. ; Berg, Y. ; Saether, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e541dbf816d8a7cc3566d24656e1d9e09cd71a1226b518b0aa20abaeffa307db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chips</topic><topic>Circuit testing</topic><topic>CMOS</topic><topic>Computer simulation</topic><topic>Current measurement</topic><topic>Design methodology</topic><topic>Electric circuits</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement standards</topic><topic>Neural networks</topic><topic>Power measurement</topic><topic>Power supplies</topic><topic>Semiconductor device measurement</topic><topic>Thresholds</topic><topic>Wiring</topic><toplevel>online_resources</toplevel><creatorcontrib>Aunet, S.</creatorcontrib><creatorcontrib>Berg, Y.</creatorcontrib><creatorcontrib>Saether, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aunet, S.</au><au>Berg, Y.</au><au>Saether, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time reconfigurable linear threshold elements implemented in floating-gate CMOS</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2003-09</date><risdate>2003</risdate><volume>14</volume><issue>5</issue><spage>1244</spage><epage>1256</epage><pages>1244-1256</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This paper describes using theory, computer simulations, and laboratory measurements a new class of real-time reconfigurable UV-programmable floating-gate (FGUVMOS) linear threshold elements operating with current levels typically in the pA to /spl mu/A range, in standard double-poly 0.6 /spl mu/m CMOS, providing an ultra low-power potential. A new design method based on using the same basic two-MOSFET circuits extensively is proposed, meant for improving the opportunities to make larger FGUVMOS circuitry than previously reported. By using the same basic circuitry extensively, instead of different circuitry for basic digital functions, the goal is to ease UV-programming and test and save circuitry on chip and I-O-pads. Matching of circuitry should also be improved by using this approach. Compact circuitry can be made, reducing wiring and active components compared to previously reported FGUVMOS. 2-MOSFET circuits able to implement CARRY, NOR, NAND, and INVERT functions are demonstrated by measurements on chip, working with power supply voltages ranging from 800 mV down to 93 mV. The basic linear threshold element proposed is considered as a potential basic building block in neural networks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18244574</pmid><doi>10.1109/TNN.2003.816351</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2003-09, Vol.14 (5), p.1244-1256
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_901681005
source IEEE Electronic Library (IEL) Journals
subjects Chips
Circuit testing
CMOS
Computer simulation
Current measurement
Design methodology
Electric circuits
Laboratories
Mathematical analysis
Mathematical models
Measurement standards
Neural networks
Power measurement
Power supplies
Semiconductor device measurement
Thresholds
Wiring
title Real-time reconfigurable linear threshold elements implemented in floating-gate CMOS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20reconfigurable%20linear%20threshold%20elements%20implemented%20in%20floating-gate%20CMOS&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Aunet,%20S.&rft.date=2003-09&rft.volume=14&rft.issue=5&rft.spage=1244&rft.epage=1256&rft.pages=1244-1256&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2003.816351&rft_dat=%3Cproquest_ieee_%3E901681005%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e541dbf816d8a7cc3566d24656e1d9e09cd71a1226b518b0aa20abaeffa307db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920873084&rft_id=info:pmid/18244574&rft_ieee_id=1243724&rfr_iscdi=true