Loading…

Exponential decay of the solutions for nonlinear multiharmonic equations

The purpose of this paper is to establish the exponential decay properties of the solutions for the nonlinear multiharmonic equation { ( − Δ ) K u + a ( x ) u = g ( x , u ) , u ∈ H K ( R N ) ⋂ C 2 K ( R N ) , where the condition u ∈ H K ( R N ) plays the role of a boundary value condition.

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2008-10, Vol.69 (7), p.1953-1965
Main Authors: Deng, Yinbin, Jin, Lingyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-1159f44b5854fcd823f50cf5869ac0261e5e5abb7279ac149ac5b9c6adc4e9913
cites cdi_FETCH-LOGICAL-c387t-1159f44b5854fcd823f50cf5869ac0261e5e5abb7279ac149ac5b9c6adc4e9913
container_end_page 1965
container_issue 7
container_start_page 1953
container_title Nonlinear analysis
container_volume 69
creator Deng, Yinbin
Jin, Lingyu
description The purpose of this paper is to establish the exponential decay properties of the solutions for the nonlinear multiharmonic equation { ( − Δ ) K u + a ( x ) u = g ( x , u ) , u ∈ H K ( R N ) ⋂ C 2 K ( R N ) , where the condition u ∈ H K ( R N ) plays the role of a boundary value condition.
doi_str_mv 10.1016/j.na.2007.07.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901684445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X07005068</els_id><sourcerecordid>901684445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1159f44b5854fcd823f50cf5869ac0261e5e5abb7279ac149ac5b9c6adc4e9913</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxoMoOKd3j72op9akSdrUm4zphIEXBW8hTV9YRpdsSSvuv7d1w5vC4z34-H3fgw-ha4Izgklxv86cynKMy2wcWpygCRElTXlO-CmaDEqeclZ8nKOLGNcYY1LSYoIW86-td-A6q9qkAa32iTdJt4Ik-rbvrHcxMT4kzrvWOlAh2fRtZ1cqbLyzOoFdr36oS3RmVBvh6nin6P1p_jZbpMvX55fZ4zLVVJRdSgivDGM1F5wZ3YicGo614aKolMZ5QYADV3Vd5uUgEDYsXle6UI1mUFWETtHdIXcb_K6H2MmNjRraVjnwfZTVUIZgjPGBvP2XpAyLiudsAPEB1MHHGMDIbbAbFfaSYDmWK9fSKTmWK8ehxWC5OWarqFVrgnLaxl9fjjkVohqjHw4cDJV8WggyagtOQ2MD6E423v795BsPyo7X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34089524</pqid></control><display><type>article</type><title>Exponential decay of the solutions for nonlinear multiharmonic equations</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Deng, Yinbin ; Jin, Lingyu</creator><creatorcontrib>Deng, Yinbin ; Jin, Lingyu</creatorcontrib><description>The purpose of this paper is to establish the exponential decay properties of the solutions for the nonlinear multiharmonic equation { ( − Δ ) K u + a ( x ) u = g ( x , u ) , u ∈ H K ( R N ) ⋂ C 2 K ( R N ) , where the condition u ∈ H K ( R N ) plays the role of a boundary value condition.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2007.07.036</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Decay ; Exact sciences and technology ; Exponential decay ; Fundamental solutions ; Mathematical analysis ; Mathematics ; Multiharmonic equations ; Nonlinearity ; Sciences and techniques of general use</subject><ispartof>Nonlinear analysis, 2008-10, Vol.69 (7), p.1953-1965</ispartof><rights>2007 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1159f44b5854fcd823f50cf5869ac0261e5e5abb7279ac149ac5b9c6adc4e9913</citedby><cites>FETCH-LOGICAL-c387t-1159f44b5854fcd823f50cf5869ac0261e5e5abb7279ac149ac5b9c6adc4e9913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X07005068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3551,27901,27902,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20538894$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Yinbin</creatorcontrib><creatorcontrib>Jin, Lingyu</creatorcontrib><title>Exponential decay of the solutions for nonlinear multiharmonic equations</title><title>Nonlinear analysis</title><description>The purpose of this paper is to establish the exponential decay properties of the solutions for the nonlinear multiharmonic equation { ( − Δ ) K u + a ( x ) u = g ( x , u ) , u ∈ H K ( R N ) ⋂ C 2 K ( R N ) , where the condition u ∈ H K ( R N ) plays the role of a boundary value condition.</description><subject>Decay</subject><subject>Exact sciences and technology</subject><subject>Exponential decay</subject><subject>Fundamental solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multiharmonic equations</subject><subject>Nonlinearity</subject><subject>Sciences and techniques of general use</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUxoMoOKd3j72op9akSdrUm4zphIEXBW8hTV9YRpdsSSvuv7d1w5vC4z34-H3fgw-ha4Izgklxv86cynKMy2wcWpygCRElTXlO-CmaDEqeclZ8nKOLGNcYY1LSYoIW86-td-A6q9qkAa32iTdJt4Ik-rbvrHcxMT4kzrvWOlAh2fRtZ1cqbLyzOoFdr36oS3RmVBvh6nin6P1p_jZbpMvX55fZ4zLVVJRdSgivDGM1F5wZ3YicGo614aKolMZ5QYADV3Vd5uUgEDYsXle6UI1mUFWETtHdIXcb_K6H2MmNjRraVjnwfZTVUIZgjPGBvP2XpAyLiudsAPEB1MHHGMDIbbAbFfaSYDmWK9fSKTmWK8ehxWC5OWarqFVrgnLaxl9fjjkVohqjHw4cDJV8WggyagtOQ2MD6E423v795BsPyo7X</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Deng, Yinbin</creator><creator>Jin, Lingyu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081001</creationdate><title>Exponential decay of the solutions for nonlinear multiharmonic equations</title><author>Deng, Yinbin ; Jin, Lingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1159f44b5854fcd823f50cf5869ac0261e5e5abb7279ac149ac5b9c6adc4e9913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Decay</topic><topic>Exact sciences and technology</topic><topic>Exponential decay</topic><topic>Fundamental solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multiharmonic equations</topic><topic>Nonlinearity</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yinbin</creatorcontrib><creatorcontrib>Jin, Lingyu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yinbin</au><au>Jin, Lingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential decay of the solutions for nonlinear multiharmonic equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>69</volume><issue>7</issue><spage>1953</spage><epage>1965</epage><pages>1953-1965</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The purpose of this paper is to establish the exponential decay properties of the solutions for the nonlinear multiharmonic equation { ( − Δ ) K u + a ( x ) u = g ( x , u ) , u ∈ H K ( R N ) ⋂ C 2 K ( R N ) , where the condition u ∈ H K ( R N ) plays the role of a boundary value condition.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2007.07.036</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2008-10, Vol.69 (7), p.1953-1965
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_901684445
source Elsevier; Backfile Package - Mathematics (Legacy) [YMT]
subjects Decay
Exact sciences and technology
Exponential decay
Fundamental solutions
Mathematical analysis
Mathematics
Multiharmonic equations
Nonlinearity
Sciences and techniques of general use
title Exponential decay of the solutions for nonlinear multiharmonic equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20decay%20of%20the%20solutions%20for%20nonlinear%20multiharmonic%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Deng,%20Yinbin&rft.date=2008-10-01&rft.volume=69&rft.issue=7&rft.spage=1953&rft.epage=1965&rft.pages=1953-1965&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2007.07.036&rft_dat=%3Cproquest_cross%3E901684445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-1159f44b5854fcd823f50cf5869ac0261e5e5abb7279ac149ac5b9c6adc4e9913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34089524&rft_id=info:pmid/&rfr_iscdi=true