Loading…
Application of strand meshes to complex aerodynamic flow fields
We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from t...
Saved in:
Published in: | Journal of computational physics 2011-07, Vol.230 (17), p.6512-6530 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3 |
container_end_page | 6530 |
container_issue | 17 |
container_start_page | 6512 |
container_title | Journal of computational physics |
container_volume | 230 |
creator | Katz, Aaron Wissink, Andrew M. Sankaran, Venkateswaran Meakin, Robert L. Chan, William M. |
description | We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods. |
doi_str_mv | 10.1016/j.jcp.2011.04.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901685581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999111002841</els_id><sourcerecordid>901685581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</originalsourceid><addsrcrecordid>eNp90EtLxDAQwPEgCq6PD-CtF9FL66SbJx5EFl8gePEeYjLFLG1Tk_rYb29kxaOnufxmBv6EnFBoKFBxsW7WbmpaoLQB1sBS7JAFBQ11K6nYJQuAltZaa7pPDnJeA4DiTC3I1fU09cHZOcSxil2V52RHXw2YXzFXc6xcHKYevyqLKfrNaIfgqq6Pn1UXsPf5iOx1ts94_DsPyfPtzfPqvn58untYXT_WjnE119QplOiVE2LJFRPIqG8FtKqzWiuh-Qtq6aXkzKJUHJwtwim-ZJ301i8Pydn27JTi2zvm2QwhO-x7O2J8z0aXBopzRYs8_1dSIRUAoxIKpVvqUsw5YWemFAabNoaC-alq1qZUNT9VDTBTqpad09_zNjvbd6WWC_lvsWXFMNkWd7l1WKJ8BEwmu4CjQx8Sutn4GP758g0GMouS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678004170</pqid></control><display><type>article</type><title>Application of strand meshes to complex aerodynamic flow fields</title><source>ScienceDirect Freedom Collection</source><creator>Katz, Aaron ; Wissink, Andrew M. ; Sankaran, Venkateswaran ; Meakin, Robert L. ; Chan, William M.</creator><creatorcontrib>Katz, Aaron ; Wissink, Andrew M. ; Sankaran, Venkateswaran ; Meakin, Robert L. ; Chan, William M.</creatorcontrib><description>We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2011.04.036</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Adaptive mesh refinement ; Aerodynamics ; Cartesian ; Computation ; Computational fluid dynamics ; Computational techniques ; Exact sciences and technology ; High-order methods ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mesh generation ; Physics ; Strands ; Trams</subject><ispartof>Journal of computational physics, 2011-07, Vol.230 (17), p.6512-6530</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</citedby><cites>FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24363472$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Aaron</creatorcontrib><creatorcontrib>Wissink, Andrew M.</creatorcontrib><creatorcontrib>Sankaran, Venkateswaran</creatorcontrib><creatorcontrib>Meakin, Robert L.</creatorcontrib><creatorcontrib>Chan, William M.</creatorcontrib><title>Application of strand meshes to complex aerodynamic flow fields</title><title>Journal of computational physics</title><description>We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.</description><subject>Adaptive mesh refinement</subject><subject>Aerodynamics</subject><subject>Cartesian</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>High-order methods</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mesh generation</subject><subject>Physics</subject><subject>Strands</subject><subject>Trams</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQwPEgCq6PD-CtF9FL66SbJx5EFl8gePEeYjLFLG1Tk_rYb29kxaOnufxmBv6EnFBoKFBxsW7WbmpaoLQB1sBS7JAFBQ11K6nYJQuAltZaa7pPDnJeA4DiTC3I1fU09cHZOcSxil2V52RHXw2YXzFXc6xcHKYevyqLKfrNaIfgqq6Pn1UXsPf5iOx1ts94_DsPyfPtzfPqvn58untYXT_WjnE119QplOiVE2LJFRPIqG8FtKqzWiuh-Qtq6aXkzKJUHJwtwim-ZJ301i8Pydn27JTi2zvm2QwhO-x7O2J8z0aXBopzRYs8_1dSIRUAoxIKpVvqUsw5YWemFAabNoaC-alq1qZUNT9VDTBTqpad09_zNjvbd6WWC_lvsWXFMNkWd7l1WKJ8BEwmu4CjQx8Sutn4GP758g0GMouS</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Katz, Aaron</creator><creator>Wissink, Andrew M.</creator><creator>Sankaran, Venkateswaran</creator><creator>Meakin, Robert L.</creator><creator>Chan, William M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110720</creationdate><title>Application of strand meshes to complex aerodynamic flow fields</title><author>Katz, Aaron ; Wissink, Andrew M. ; Sankaran, Venkateswaran ; Meakin, Robert L. ; Chan, William M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive mesh refinement</topic><topic>Aerodynamics</topic><topic>Cartesian</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>High-order methods</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mesh generation</topic><topic>Physics</topic><topic>Strands</topic><topic>Trams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Aaron</creatorcontrib><creatorcontrib>Wissink, Andrew M.</creatorcontrib><creatorcontrib>Sankaran, Venkateswaran</creatorcontrib><creatorcontrib>Meakin, Robert L.</creatorcontrib><creatorcontrib>Chan, William M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Aaron</au><au>Wissink, Andrew M.</au><au>Sankaran, Venkateswaran</au><au>Meakin, Robert L.</au><au>Chan, William M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of strand meshes to complex aerodynamic flow fields</atitle><jtitle>Journal of computational physics</jtitle><date>2011-07-20</date><risdate>2011</risdate><volume>230</volume><issue>17</issue><spage>6512</spage><epage>6530</epage><pages>6512-6530</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2011.04.036</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2011-07, Vol.230 (17), p.6512-6530 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_901685581 |
source | ScienceDirect Freedom Collection |
subjects | Adaptive mesh refinement Aerodynamics Cartesian Computation Computational fluid dynamics Computational techniques Exact sciences and technology High-order methods Mathematical analysis Mathematical methods in physics Mathematical models Mesh generation Physics Strands Trams |
title | Application of strand meshes to complex aerodynamic flow fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20strand%20meshes%20to%20complex%20aerodynamic%20flow%20fields&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Katz,%20Aaron&rft.date=2011-07-20&rft.volume=230&rft.issue=17&rft.spage=6512&rft.epage=6530&rft.pages=6512-6530&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2011.04.036&rft_dat=%3Cproquest_cross%3E901685581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1678004170&rft_id=info:pmid/&rfr_iscdi=true |