Loading…

Application of strand meshes to complex aerodynamic flow fields

We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2011-07, Vol.230 (17), p.6512-6530
Main Authors: Katz, Aaron, Wissink, Andrew M., Sankaran, Venkateswaran, Meakin, Robert L., Chan, William M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3
cites cdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3
container_end_page 6530
container_issue 17
container_start_page 6512
container_title Journal of computational physics
container_volume 230
creator Katz, Aaron
Wissink, Andrew M.
Sankaran, Venkateswaran
Meakin, Robert L.
Chan, William M.
description We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.
doi_str_mv 10.1016/j.jcp.2011.04.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901685581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999111002841</els_id><sourcerecordid>901685581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</originalsourceid><addsrcrecordid>eNp90EtLxDAQwPEgCq6PD-CtF9FL66SbJx5EFl8gePEeYjLFLG1Tk_rYb29kxaOnufxmBv6EnFBoKFBxsW7WbmpaoLQB1sBS7JAFBQ11K6nYJQuAltZaa7pPDnJeA4DiTC3I1fU09cHZOcSxil2V52RHXw2YXzFXc6xcHKYevyqLKfrNaIfgqq6Pn1UXsPf5iOx1ts94_DsPyfPtzfPqvn58untYXT_WjnE119QplOiVE2LJFRPIqG8FtKqzWiuh-Qtq6aXkzKJUHJwtwim-ZJ301i8Pydn27JTi2zvm2QwhO-x7O2J8z0aXBopzRYs8_1dSIRUAoxIKpVvqUsw5YWemFAabNoaC-alq1qZUNT9VDTBTqpad09_zNjvbd6WWC_lvsWXFMNkWd7l1WKJ8BEwmu4CjQx8Sutn4GP758g0GMouS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678004170</pqid></control><display><type>article</type><title>Application of strand meshes to complex aerodynamic flow fields</title><source>ScienceDirect Freedom Collection</source><creator>Katz, Aaron ; Wissink, Andrew M. ; Sankaran, Venkateswaran ; Meakin, Robert L. ; Chan, William M.</creator><creatorcontrib>Katz, Aaron ; Wissink, Andrew M. ; Sankaran, Venkateswaran ; Meakin, Robert L. ; Chan, William M.</creatorcontrib><description>We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2011.04.036</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Adaptive mesh refinement ; Aerodynamics ; Cartesian ; Computation ; Computational fluid dynamics ; Computational techniques ; Exact sciences and technology ; High-order methods ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mesh generation ; Physics ; Strands ; Trams</subject><ispartof>Journal of computational physics, 2011-07, Vol.230 (17), p.6512-6530</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</citedby><cites>FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24363472$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Aaron</creatorcontrib><creatorcontrib>Wissink, Andrew M.</creatorcontrib><creatorcontrib>Sankaran, Venkateswaran</creatorcontrib><creatorcontrib>Meakin, Robert L.</creatorcontrib><creatorcontrib>Chan, William M.</creatorcontrib><title>Application of strand meshes to complex aerodynamic flow fields</title><title>Journal of computational physics</title><description>We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.</description><subject>Adaptive mesh refinement</subject><subject>Aerodynamics</subject><subject>Cartesian</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>High-order methods</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mesh generation</subject><subject>Physics</subject><subject>Strands</subject><subject>Trams</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQwPEgCq6PD-CtF9FL66SbJx5EFl8gePEeYjLFLG1Tk_rYb29kxaOnufxmBv6EnFBoKFBxsW7WbmpaoLQB1sBS7JAFBQ11K6nYJQuAltZaa7pPDnJeA4DiTC3I1fU09cHZOcSxil2V52RHXw2YXzFXc6xcHKYevyqLKfrNaIfgqq6Pn1UXsPf5iOx1ts94_DsPyfPtzfPqvn58untYXT_WjnE119QplOiVE2LJFRPIqG8FtKqzWiuh-Qtq6aXkzKJUHJwtwim-ZJ301i8Pydn27JTi2zvm2QwhO-x7O2J8z0aXBopzRYs8_1dSIRUAoxIKpVvqUsw5YWemFAabNoaC-alq1qZUNT9VDTBTqpad09_zNjvbd6WWC_lvsWXFMNkWd7l1WKJ8BEwmu4CjQx8Sutn4GP758g0GMouS</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Katz, Aaron</creator><creator>Wissink, Andrew M.</creator><creator>Sankaran, Venkateswaran</creator><creator>Meakin, Robert L.</creator><creator>Chan, William M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110720</creationdate><title>Application of strand meshes to complex aerodynamic flow fields</title><author>Katz, Aaron ; Wissink, Andrew M. ; Sankaran, Venkateswaran ; Meakin, Robert L. ; Chan, William M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive mesh refinement</topic><topic>Aerodynamics</topic><topic>Cartesian</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>High-order methods</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mesh generation</topic><topic>Physics</topic><topic>Strands</topic><topic>Trams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Aaron</creatorcontrib><creatorcontrib>Wissink, Andrew M.</creatorcontrib><creatorcontrib>Sankaran, Venkateswaran</creatorcontrib><creatorcontrib>Meakin, Robert L.</creatorcontrib><creatorcontrib>Chan, William M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Aaron</au><au>Wissink, Andrew M.</au><au>Sankaran, Venkateswaran</au><au>Meakin, Robert L.</au><au>Chan, William M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of strand meshes to complex aerodynamic flow fields</atitle><jtitle>Journal of computational physics</jtitle><date>2011-07-20</date><risdate>2011</risdate><volume>230</volume><issue>17</issue><spage>6512</spage><epage>6530</epage><pages>6512-6530</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using “strands” is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids.The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2011.04.036</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2011-07, Vol.230 (17), p.6512-6530
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_901685581
source ScienceDirect Freedom Collection
subjects Adaptive mesh refinement
Aerodynamics
Cartesian
Computation
Computational fluid dynamics
Computational techniques
Exact sciences and technology
High-order methods
Mathematical analysis
Mathematical methods in physics
Mathematical models
Mesh generation
Physics
Strands
Trams
title Application of strand meshes to complex aerodynamic flow fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20strand%20meshes%20to%20complex%20aerodynamic%20flow%20fields&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Katz,%20Aaron&rft.date=2011-07-20&rft.volume=230&rft.issue=17&rft.spage=6512&rft.epage=6530&rft.pages=6512-6530&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2011.04.036&rft_dat=%3Cproquest_cross%3E901685581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-1c8e7ed8c6635846e41d26028fa998695be97d7754ae7850cae41c8534f7dad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1678004170&rft_id=info:pmid/&rfr_iscdi=true