Loading…

Random Weighting Estimation Method for Dynamic Navigation Positioning

This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations a...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of aeronautics 2011-06, Vol.24 (3), p.318-323
Main Authors: GAO, Shesheng, GAO, Yi, ZHONG, Yongmin, WEI, Wenhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-ff4089549f0863e729c0ba58f9c5a2e4c4fd992a8d9be626f64e20afe9513df23
cites cdi_FETCH-LOGICAL-c367t-ff4089549f0863e729c0ba58f9c5a2e4c4fd992a8d9be626f64e20afe9513df23
container_end_page 323
container_issue 3
container_start_page 318
container_title Chinese journal of aeronautics
container_volume 24
creator GAO, Shesheng
GAO, Yi
ZHONG, Yongmin
WEI, Wenhui
description This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation.
doi_str_mv 10.1016/S1000-9361(11)60037-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901692846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>38447482</cqvip_id><els_id>S100093611160037X</els_id><sourcerecordid>901692846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ff4089549f0863e729c0ba58f9c5a2e4c4fd992a8d9be626f64e20afe9513df23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRb0AiVL4BKSwAhYBO3aceIVQKQ-pPMRDdGe5zjg1auLWTiv170mbqltWM5qZe6_mIHRG8DXBhN98EoxxLCgnl4RccYxpFo8PUG8_PkLHIfy2c5ER3EPDD1UXrop-wJbTxtZlNAyNrVRjXR29QDN1RWScj-7Xtaqsjl7Vypbd9t0Fu2la0Qk6NGoW4HRX--j7Yfg1eIpHb4_Pg7tRrCnPmtgYhnORMmFwzilkidB4otLcCJ2qBJhmphAiUXkhJsATbjiDBCsDIiW0MAnto4vOd-7dYgmhkZUNGmYzVYNbBilaBCLJGW8v0-5SexeCByPnvn3LryXBckNKbknJDRJJiNySkuNWd9vpoH1jZcHLoC3UGgrrQTeycPZfh_Nd8tTV5aKls4-mOWMZyxP6B0bkffU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901692846</pqid></control><display><type>article</type><title>Random Weighting Estimation Method for Dynamic Navigation Positioning</title><source>ScienceDirect Journals</source><creator>GAO, Shesheng ; GAO, Yi ; ZHONG, Yongmin ; WEI, Wenhui</creator><creatorcontrib>GAO, Shesheng ; GAO, Yi ; ZHONG, Yongmin ; WEI, Wenhui</creatorcontrib><description>This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/S1000-9361(11)60037-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>covariance matrix ; dynamic navigation positioning ; Dynamical systems ; Dynamics ; error ; Errors ; estimation ; kinematic model error ; Mathematical analysis ; Mathematical models ; Navigation ; observation model error ; random weighting estimation ; Vectors (mathematics) ; Weighting ; 估计方法 ; 协方差矩阵 ; 导航定位精度 ; 扩展卡尔曼滤波 ; 自适应窗口 ; 误差控制 ; 运动学模型 ; 随机加权估计</subject><ispartof>Chinese journal of aeronautics, 2011-06, Vol.24 (3), p.318-323</ispartof><rights>2011 Chinese Journal of Aeronautics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ff4089549f0863e729c0ba58f9c5a2e4c4fd992a8d9be626f64e20afe9513df23</citedby><cites>FETCH-LOGICAL-c367t-ff4089549f0863e729c0ba58f9c5a2e4c4fd992a8d9be626f64e20afe9513df23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83889X/83889X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S100093611160037X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>GAO, Shesheng</creatorcontrib><creatorcontrib>GAO, Yi</creatorcontrib><creatorcontrib>ZHONG, Yongmin</creatorcontrib><creatorcontrib>WEI, Wenhui</creatorcontrib><title>Random Weighting Estimation Method for Dynamic Navigation Positioning</title><title>Chinese journal of aeronautics</title><addtitle>Chinese Journal of Aeronautics</addtitle><description>This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation.</description><subject>covariance matrix</subject><subject>dynamic navigation positioning</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>error</subject><subject>Errors</subject><subject>estimation</subject><subject>kinematic model error</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>observation model error</subject><subject>random weighting estimation</subject><subject>Vectors (mathematics)</subject><subject>Weighting</subject><subject>估计方法</subject><subject>协方差矩阵</subject><subject>导航定位精度</subject><subject>扩展卡尔曼滤波</subject><subject>自适应窗口</subject><subject>误差控制</subject><subject>运动学模型</subject><subject>随机加权估计</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRb0AiVL4BKSwAhYBO3aceIVQKQ-pPMRDdGe5zjg1auLWTiv170mbqltWM5qZe6_mIHRG8DXBhN98EoxxLCgnl4RccYxpFo8PUG8_PkLHIfy2c5ER3EPDD1UXrop-wJbTxtZlNAyNrVRjXR29QDN1RWScj-7Xtaqsjl7Vypbd9t0Fu2la0Qk6NGoW4HRX--j7Yfg1eIpHb4_Pg7tRrCnPmtgYhnORMmFwzilkidB4otLcCJ2qBJhmphAiUXkhJsATbjiDBCsDIiW0MAnto4vOd-7dYgmhkZUNGmYzVYNbBilaBCLJGW8v0-5SexeCByPnvn3LryXBckNKbknJDRJJiNySkuNWd9vpoH1jZcHLoC3UGgrrQTeycPZfh_Nd8tTV5aKls4-mOWMZyxP6B0bkffU</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>GAO, Shesheng</creator><creator>GAO, Yi</creator><creator>ZHONG, Yongmin</creator><creator>WEI, Wenhui</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Random Weighting Estimation Method for Dynamic Navigation Positioning</title><author>GAO, Shesheng ; GAO, Yi ; ZHONG, Yongmin ; WEI, Wenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ff4089549f0863e729c0ba58f9c5a2e4c4fd992a8d9be626f64e20afe9513df23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>covariance matrix</topic><topic>dynamic navigation positioning</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>error</topic><topic>Errors</topic><topic>estimation</topic><topic>kinematic model error</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>observation model error</topic><topic>random weighting estimation</topic><topic>Vectors (mathematics)</topic><topic>Weighting</topic><topic>估计方法</topic><topic>协方差矩阵</topic><topic>导航定位精度</topic><topic>扩展卡尔曼滤波</topic><topic>自适应窗口</topic><topic>误差控制</topic><topic>运动学模型</topic><topic>随机加权估计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GAO, Shesheng</creatorcontrib><creatorcontrib>GAO, Yi</creatorcontrib><creatorcontrib>ZHONG, Yongmin</creatorcontrib><creatorcontrib>WEI, Wenhui</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GAO, Shesheng</au><au>GAO, Yi</au><au>ZHONG, Yongmin</au><au>WEI, Wenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Weighting Estimation Method for Dynamic Navigation Positioning</atitle><jtitle>Chinese journal of aeronautics</jtitle><addtitle>Chinese Journal of Aeronautics</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>24</volume><issue>3</issue><spage>318</spage><epage>323</epage><pages>318-323</pages><issn>1000-9361</issn><abstract>This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1000-9361(11)60037-X</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2011-06, Vol.24 (3), p.318-323
issn 1000-9361
language eng
recordid cdi_proquest_miscellaneous_901692846
source ScienceDirect Journals
subjects covariance matrix
dynamic navigation positioning
Dynamical systems
Dynamics
error
Errors
estimation
kinematic model error
Mathematical analysis
Mathematical models
Navigation
observation model error
random weighting estimation
Vectors (mathematics)
Weighting
估计方法
协方差矩阵
导航定位精度
扩展卡尔曼滤波
自适应窗口
误差控制
运动学模型
随机加权估计
title Random Weighting Estimation Method for Dynamic Navigation Positioning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Weighting%20Estimation%20Method%20for%20Dynamic%20Navigation%20Positioning&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=GAO,%20Shesheng&rft.date=2011-06-01&rft.volume=24&rft.issue=3&rft.spage=318&rft.epage=323&rft.pages=318-323&rft.issn=1000-9361&rft_id=info:doi/10.1016/S1000-9361(11)60037-X&rft_dat=%3Cproquest_cross%3E901692846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ff4089549f0863e729c0ba58f9c5a2e4c4fd992a8d9be626f64e20afe9513df23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901692846&rft_id=info:pmid/&rft_cqvip_id=38447482&rfr_iscdi=true