Loading…

A mixed neural-genetic algorithm for the broadcast scheduling problem

The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2003-03, Vol.2 (2), p.277-283
Main Authors: Salcedo-Sanz, S., Bousono-Calzon, C., Figueiras-Vidal, A.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183
cites cdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183
container_end_page 283
container_issue 2
container_start_page 277
container_title IEEE transactions on wireless communications
container_volume 2
creator Salcedo-Sanz, S.
Bousono-Calzon, C.
Figueiras-Vidal, A.R.
description The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.
doi_str_mv 10.1109/TWC.2003.808967
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901695602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1184112</ieee_id><sourcerecordid>901695602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRUKtnD14WQT1tO8lmk8lRSv2AgpeKx5BNJ-3KfmiyC_rfu6WC4MHTDMzvvZl5SXLBYMoY6NnqdT7lAPkUAbVUB8kJKwrMOBd4uOtzmTGu5HFyGuMbAFOyKE6SxV3aVJ-0Tlsagq2zDbXUVy619aYLVb9tUt-FtN9SWobOrp2NfRrdltZDXbWb9D10ZU3NWXLkbR3p_KdOkpf7xWr-mC2fH57md8vM5Ur3GbG8YArRlxo5cEGCQDrtCVCiLFGUsgQCq3LhvVxzxQCcdE54IMcZ5pPkdu877v0YKPamqaKjurYtdUM0GpjUhQQ-kjf_khwFkxx3lld_wLduCO34hUEUHDRHNUKzPeRCF2Mgb95D1djwZRiYXfpmTN_s0jf79EfF9Y-tjc7WPtjWVfFXJgrkWomRu9xzFRH9jtl4HuP5N82ui7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884209287</pqid></control><display><type>article</type><title>A mixed neural-genetic algorithm for the broadcast scheduling problem</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Salcedo-Sanz, S. ; Bousono-Calzon, C. ; Figueiras-Vidal, A.R.</creator><creatorcontrib>Salcedo-Sanz, S. ; Bousono-Calzon, C. ; Figueiras-Vidal, A.R.</creatorcontrib><description>The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2003.808967</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Algorithms ; Applied sciences ; Broadcasting ; Combinatorial analysis ; Computational modeling ; Delay ; Exact sciences and technology ; Frames ; Genetic algorithms ; Hopfield neural networks ; Interference constraints ; Neural networks ; Optimization ; Packet radio networks ; Radio broadcasting ; Scheduling ; Scheduling algorithm ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Throughput ; Transmission and modulation (techniques and equipments) ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2003-03, Vol.2 (2), p.277-283</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</citedby><cites>FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1184112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14582974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Bousono-Calzon, C.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A.R.</creatorcontrib><title>A mixed neural-genetic algorithm for the broadcast scheduling problem</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Broadcasting</subject><subject>Combinatorial analysis</subject><subject>Computational modeling</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Frames</subject><subject>Genetic algorithms</subject><subject>Hopfield neural networks</subject><subject>Interference constraints</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Packet radio networks</subject><subject>Radio broadcasting</subject><subject>Scheduling</subject><subject>Scheduling algorithm</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Throughput</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxRdRUKtnD14WQT1tO8lmk8lRSv2AgpeKx5BNJ-3KfmiyC_rfu6WC4MHTDMzvvZl5SXLBYMoY6NnqdT7lAPkUAbVUB8kJKwrMOBd4uOtzmTGu5HFyGuMbAFOyKE6SxV3aVJ-0Tlsagq2zDbXUVy619aYLVb9tUt-FtN9SWobOrp2NfRrdltZDXbWb9D10ZU3NWXLkbR3p_KdOkpf7xWr-mC2fH57md8vM5Ur3GbG8YArRlxo5cEGCQDrtCVCiLFGUsgQCq3LhvVxzxQCcdE54IMcZ5pPkdu877v0YKPamqaKjurYtdUM0GpjUhQQ-kjf_khwFkxx3lld_wLduCO34hUEUHDRHNUKzPeRCF2Mgb95D1djwZRiYXfpmTN_s0jf79EfF9Y-tjc7WPtjWVfFXJgrkWomRu9xzFRH9jtl4HuP5N82ui7o</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Salcedo-Sanz, S.</creator><creator>Bousono-Calzon, C.</creator><creator>Figueiras-Vidal, A.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030301</creationdate><title>A mixed neural-genetic algorithm for the broadcast scheduling problem</title><author>Salcedo-Sanz, S. ; Bousono-Calzon, C. ; Figueiras-Vidal, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Broadcasting</topic><topic>Combinatorial analysis</topic><topic>Computational modeling</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Frames</topic><topic>Genetic algorithms</topic><topic>Hopfield neural networks</topic><topic>Interference constraints</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Packet radio networks</topic><topic>Radio broadcasting</topic><topic>Scheduling</topic><topic>Scheduling algorithm</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Throughput</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Bousono-Calzon, C.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo-Sanz, S.</au><au>Bousono-Calzon, C.</au><au>Figueiras-Vidal, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mixed neural-genetic algorithm for the broadcast scheduling problem</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2003-03-01</date><risdate>2003</risdate><volume>2</volume><issue>2</issue><spage>277</spage><epage>283</epage><pages>277-283</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TWC.2003.808967</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2003-03, Vol.2 (2), p.277-283
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_miscellaneous_901695602
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Broadcasting
Combinatorial analysis
Computational modeling
Delay
Exact sciences and technology
Frames
Genetic algorithms
Hopfield neural networks
Interference constraints
Neural networks
Optimization
Packet radio networks
Radio broadcasting
Scheduling
Scheduling algorithm
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Throughput
Transmission and modulation (techniques and equipments)
Wireless communication
title A mixed neural-genetic algorithm for the broadcast scheduling problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mixed%20neural-genetic%20algorithm%20for%20the%20broadcast%20scheduling%20problem&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Salcedo-Sanz,%20S.&rft.date=2003-03-01&rft.volume=2&rft.issue=2&rft.spage=277&rft.epage=283&rft.pages=277-283&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2003.808967&rft_dat=%3Cproquest_cross%3E901695602%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884209287&rft_id=info:pmid/&rft_ieee_id=1184112&rfr_iscdi=true