Loading…
A mixed neural-genetic algorithm for the broadcast scheduling problem
The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose...
Saved in:
Published in: | IEEE transactions on wireless communications 2003-03, Vol.2 (2), p.277-283 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183 |
container_end_page | 283 |
container_issue | 2 |
container_start_page | 277 |
container_title | IEEE transactions on wireless communications |
container_volume | 2 |
creator | Salcedo-Sanz, S. Bousono-Calzon, C. Figueiras-Vidal, A.R. |
description | The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput. |
doi_str_mv | 10.1109/TWC.2003.808967 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901695602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1184112</ieee_id><sourcerecordid>901695602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRUKtnD14WQT1tO8lmk8lRSv2AgpeKx5BNJ-3KfmiyC_rfu6WC4MHTDMzvvZl5SXLBYMoY6NnqdT7lAPkUAbVUB8kJKwrMOBd4uOtzmTGu5HFyGuMbAFOyKE6SxV3aVJ-0Tlsagq2zDbXUVy619aYLVb9tUt-FtN9SWobOrp2NfRrdltZDXbWb9D10ZU3NWXLkbR3p_KdOkpf7xWr-mC2fH57md8vM5Ur3GbG8YArRlxo5cEGCQDrtCVCiLFGUsgQCq3LhvVxzxQCcdE54IMcZ5pPkdu877v0YKPamqaKjurYtdUM0GpjUhQQ-kjf_khwFkxx3lld_wLduCO34hUEUHDRHNUKzPeRCF2Mgb95D1djwZRiYXfpmTN_s0jf79EfF9Y-tjc7WPtjWVfFXJgrkWomRu9xzFRH9jtl4HuP5N82ui7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884209287</pqid></control><display><type>article</type><title>A mixed neural-genetic algorithm for the broadcast scheduling problem</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Salcedo-Sanz, S. ; Bousono-Calzon, C. ; Figueiras-Vidal, A.R.</creator><creatorcontrib>Salcedo-Sanz, S. ; Bousono-Calzon, C. ; Figueiras-Vidal, A.R.</creatorcontrib><description>The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2003.808967</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Algorithms ; Applied sciences ; Broadcasting ; Combinatorial analysis ; Computational modeling ; Delay ; Exact sciences and technology ; Frames ; Genetic algorithms ; Hopfield neural networks ; Interference constraints ; Neural networks ; Optimization ; Packet radio networks ; Radio broadcasting ; Scheduling ; Scheduling algorithm ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Throughput ; Transmission and modulation (techniques and equipments) ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2003-03, Vol.2 (2), p.277-283</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</citedby><cites>FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1184112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14582974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Bousono-Calzon, C.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A.R.</creatorcontrib><title>A mixed neural-genetic algorithm for the broadcast scheduling problem</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Broadcasting</subject><subject>Combinatorial analysis</subject><subject>Computational modeling</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Frames</subject><subject>Genetic algorithms</subject><subject>Hopfield neural networks</subject><subject>Interference constraints</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Packet radio networks</subject><subject>Radio broadcasting</subject><subject>Scheduling</subject><subject>Scheduling algorithm</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Throughput</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxRdRUKtnD14WQT1tO8lmk8lRSv2AgpeKx5BNJ-3KfmiyC_rfu6WC4MHTDMzvvZl5SXLBYMoY6NnqdT7lAPkUAbVUB8kJKwrMOBd4uOtzmTGu5HFyGuMbAFOyKE6SxV3aVJ-0Tlsagq2zDbXUVy619aYLVb9tUt-FtN9SWobOrp2NfRrdltZDXbWb9D10ZU3NWXLkbR3p_KdOkpf7xWr-mC2fH57md8vM5Ur3GbG8YArRlxo5cEGCQDrtCVCiLFGUsgQCq3LhvVxzxQCcdE54IMcZ5pPkdu877v0YKPamqaKjurYtdUM0GpjUhQQ-kjf_khwFkxx3lld_wLduCO34hUEUHDRHNUKzPeRCF2Mgb95D1djwZRiYXfpmTN_s0jf79EfF9Y-tjc7WPtjWVfFXJgrkWomRu9xzFRH9jtl4HuP5N82ui7o</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Salcedo-Sanz, S.</creator><creator>Bousono-Calzon, C.</creator><creator>Figueiras-Vidal, A.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030301</creationdate><title>A mixed neural-genetic algorithm for the broadcast scheduling problem</title><author>Salcedo-Sanz, S. ; Bousono-Calzon, C. ; Figueiras-Vidal, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Broadcasting</topic><topic>Combinatorial analysis</topic><topic>Computational modeling</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Frames</topic><topic>Genetic algorithms</topic><topic>Hopfield neural networks</topic><topic>Interference constraints</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Packet radio networks</topic><topic>Radio broadcasting</topic><topic>Scheduling</topic><topic>Scheduling algorithm</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Throughput</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Bousono-Calzon, C.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo-Sanz, S.</au><au>Bousono-Calzon, C.</au><au>Figueiras-Vidal, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mixed neural-genetic algorithm for the broadcast scheduling problem</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2003-03-01</date><risdate>2003</risdate><volume>2</volume><issue>2</issue><spage>277</spage><epage>283</epage><pages>277-283</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TWC.2003.808967</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2003-03, Vol.2 (2), p.277-283 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_miscellaneous_901695602 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Broadcasting Combinatorial analysis Computational modeling Delay Exact sciences and technology Frames Genetic algorithms Hopfield neural networks Interference constraints Neural networks Optimization Packet radio networks Radio broadcasting Scheduling Scheduling algorithm Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Throughput Transmission and modulation (techniques and equipments) Wireless communication |
title | A mixed neural-genetic algorithm for the broadcast scheduling problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mixed%20neural-genetic%20algorithm%20for%20the%20broadcast%20scheduling%20problem&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Salcedo-Sanz,%20S.&rft.date=2003-03-01&rft.volume=2&rft.issue=2&rft.spage=277&rft.epage=283&rft.pages=277-283&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2003.808967&rft_dat=%3Cproquest_cross%3E901695602%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-e1351788fb982024e4e06c9fe08686b84b6b0e0a734ff6d27100c6cc4f0ec2183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884209287&rft_id=info:pmid/&rft_ieee_id=1184112&rfr_iscdi=true |