Loading…

Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation

Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is dire...

Full description

Saved in:
Bibliographic Details
Published in:Optics and lasers in engineering 2009-03, Vol.47 (3), p.412-418
Main Authors: Crunelle, C., Caucheteur, C., Wuilpart, M., Mégret, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583
cites cdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583
container_end_page 418
container_issue 3
container_start_page 412
container_title Optics and lasers in engineering
container_volume 47
creator Crunelle, C.
Caucheteur, C.
Wuilpart, M.
Mégret, P.
description Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs. In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor.
doi_str_mv 10.1016/j.optlaseng.2008.06.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901697907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816608001541</els_id><sourcerecordid>901697907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVoIdu0vyG-ND3ZHVm2LB-TkKSFQCm0ZzGWx44WW9pKciD_PgobckxPgsf3ZjTvMXbOoeLA5fd95Q9pwUhurmoAVYGsoIYTtuOqEyUIqD-wHfBGlIpLeco-xbiH7Gw437HH3xtGW442pmCHLdFYJFoPFDBtgYo8NfpQGL8O1lk3F7d2yPJVwHku7jKUtVigO7p8wKUINC1kkl8phacsmwdn_21UWJcoBD9nj3ef2ccJl0hfXt8z9vf25s_1j_L-193P68v70jSgUqmmsSbgfdcCtahkN6p-GAVOAyIobJqBcxhlLesWJylFb8zQoZTYT5xjq8QZ-3acewg-fyImvdpoaFnQkd-i7nMOfddDl8mLd0khmpYr2WawO4Im-BjztfoQ7IrhSXPQL43ovX5rRL80okHq3Eh2fn1dgdHgMgV0xsY3e82FgKYRmbs8cpSTebQUdDSWnKHRhpysHr39765n3nWpWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33451865</pqid></control><display><type>article</type><title>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</title><source>Elsevier</source><creator>Crunelle, C. ; Caucheteur, C. ; Wuilpart, M. ; Mégret, P.</creator><creatorcontrib>Crunelle, C. ; Caucheteur, C. ; Wuilpart, M. ; Mégret, P.</creatorcontrib><description>Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs. In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor.</description><identifier>ISSN: 0143-8166</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2008.06.020</identifier><identifier>CODEN: OLENDN</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Devices ; Diffraction gratings ; Exact sciences and technology ; Fiber optics ; Fibre ; Fibre Bragg Grating ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Gratings (spectra) ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Optics ; OTDR ; Other fiber-optical devices ; Physics ; Quasi-distributed sensor ; Reflectometry ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Sensors, gyros ; Spectra ; Temperature sensor ; Wavelengths</subject><ispartof>Optics and lasers in engineering, 2009-03, Vol.47 (3), p.412-418</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</citedby><cites>FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21330443$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crunelle, C.</creatorcontrib><creatorcontrib>Caucheteur, C.</creatorcontrib><creatorcontrib>Wuilpart, M.</creatorcontrib><creatorcontrib>Mégret, P.</creatorcontrib><title>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</title><title>Optics and lasers in engineering</title><description>Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs. In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor.</description><subject>Devices</subject><subject>Diffraction gratings</subject><subject>Exact sciences and technology</subject><subject>Fiber optics</subject><subject>Fibre</subject><subject>Fibre Bragg Grating</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Gratings (spectra)</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Optics</subject><subject>OTDR</subject><subject>Other fiber-optical devices</subject><subject>Physics</subject><subject>Quasi-distributed sensor</subject><subject>Reflectometry</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Sensors, gyros</subject><subject>Spectra</subject><subject>Temperature sensor</subject><subject>Wavelengths</subject><issn>0143-8166</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVoIdu0vyG-ND3ZHVm2LB-TkKSFQCm0ZzGWx44WW9pKciD_PgobckxPgsf3ZjTvMXbOoeLA5fd95Q9pwUhurmoAVYGsoIYTtuOqEyUIqD-wHfBGlIpLeco-xbiH7Gw437HH3xtGW442pmCHLdFYJFoPFDBtgYo8NfpQGL8O1lk3F7d2yPJVwHku7jKUtVigO7p8wKUINC1kkl8phacsmwdn_21UWJcoBD9nj3ef2ccJl0hfXt8z9vf25s_1j_L-193P68v70jSgUqmmsSbgfdcCtahkN6p-GAVOAyIobJqBcxhlLesWJylFb8zQoZTYT5xjq8QZ-3acewg-fyImvdpoaFnQkd-i7nMOfddDl8mLd0khmpYr2WawO4Im-BjztfoQ7IrhSXPQL43ovX5rRL80okHq3Eh2fn1dgdHgMgV0xsY3e82FgKYRmbs8cpSTebQUdDSWnKHRhpysHr39765n3nWpWA</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Crunelle, C.</creator><creator>Caucheteur, C.</creator><creator>Wuilpart, M.</creator><creator>Mégret, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090301</creationdate><title>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</title><author>Crunelle, C. ; Caucheteur, C. ; Wuilpart, M. ; Mégret, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Devices</topic><topic>Diffraction gratings</topic><topic>Exact sciences and technology</topic><topic>Fiber optics</topic><topic>Fibre</topic><topic>Fibre Bragg Grating</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Gratings (spectra)</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Optics</topic><topic>OTDR</topic><topic>Other fiber-optical devices</topic><topic>Physics</topic><topic>Quasi-distributed sensor</topic><topic>Reflectometry</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Sensors, gyros</topic><topic>Spectra</topic><topic>Temperature sensor</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crunelle, C.</creatorcontrib><creatorcontrib>Caucheteur, C.</creatorcontrib><creatorcontrib>Wuilpart, M.</creatorcontrib><creatorcontrib>Mégret, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and lasers in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crunelle, C.</au><au>Caucheteur, C.</au><au>Wuilpart, M.</au><au>Mégret, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</atitle><jtitle>Optics and lasers in engineering</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>47</volume><issue>3</issue><spage>412</spage><epage>418</epage><pages>412-418</pages><issn>0143-8166</issn><eissn>1873-0302</eissn><coden>OLENDN</coden><abstract>Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs. In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2008.06.020</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-8166
ispartof Optics and lasers in engineering, 2009-03, Vol.47 (3), p.412-418
issn 0143-8166
1873-0302
language eng
recordid cdi_proquest_miscellaneous_901697907
source Elsevier
subjects Devices
Diffraction gratings
Exact sciences and technology
Fiber optics
Fibre
Fibre Bragg Grating
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Gratings (spectra)
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Optics
OTDR
Other fiber-optical devices
Physics
Quasi-distributed sensor
Reflectometry
Sensors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Sensors, gyros
Spectra
Temperature sensor
Wavelengths
title Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-distributed%20temperature%20sensor%20combining%20Fibre%20Bragg%20Gratings%20and%20temporal%20reflectometry%20technique%20interrogation&rft.jtitle=Optics%20and%20lasers%20in%20engineering&rft.au=Crunelle,%20C.&rft.date=2009-03-01&rft.volume=47&rft.issue=3&rft.spage=412&rft.epage=418&rft.pages=412-418&rft.issn=0143-8166&rft.eissn=1873-0302&rft.coden=OLENDN&rft_id=info:doi/10.1016/j.optlaseng.2008.06.020&rft_dat=%3Cproquest_cross%3E901697907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33451865&rft_id=info:pmid/&rfr_iscdi=true