Loading…
Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation
Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is dire...
Saved in:
Published in: | Optics and lasers in engineering 2009-03, Vol.47 (3), p.412-418 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583 |
container_end_page | 418 |
container_issue | 3 |
container_start_page | 412 |
container_title | Optics and lasers in engineering |
container_volume | 47 |
creator | Crunelle, C. Caucheteur, C. Wuilpart, M. Mégret, P. |
description | Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs.
In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor. |
doi_str_mv | 10.1016/j.optlaseng.2008.06.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901697907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816608001541</els_id><sourcerecordid>901697907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVoIdu0vyG-ND3ZHVm2LB-TkKSFQCm0ZzGWx44WW9pKciD_PgobckxPgsf3ZjTvMXbOoeLA5fd95Q9pwUhurmoAVYGsoIYTtuOqEyUIqD-wHfBGlIpLeco-xbiH7Gw437HH3xtGW442pmCHLdFYJFoPFDBtgYo8NfpQGL8O1lk3F7d2yPJVwHku7jKUtVigO7p8wKUINC1kkl8phacsmwdn_21UWJcoBD9nj3ef2ccJl0hfXt8z9vf25s_1j_L-193P68v70jSgUqmmsSbgfdcCtahkN6p-GAVOAyIobJqBcxhlLesWJylFb8zQoZTYT5xjq8QZ-3acewg-fyImvdpoaFnQkd-i7nMOfddDl8mLd0khmpYr2WawO4Im-BjztfoQ7IrhSXPQL43ovX5rRL80okHq3Eh2fn1dgdHgMgV0xsY3e82FgKYRmbs8cpSTebQUdDSWnKHRhpysHr39765n3nWpWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33451865</pqid></control><display><type>article</type><title>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</title><source>Elsevier</source><creator>Crunelle, C. ; Caucheteur, C. ; Wuilpart, M. ; Mégret, P.</creator><creatorcontrib>Crunelle, C. ; Caucheteur, C. ; Wuilpart, M. ; Mégret, P.</creatorcontrib><description>Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs.
In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor.</description><identifier>ISSN: 0143-8166</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2008.06.020</identifier><identifier>CODEN: OLENDN</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Devices ; Diffraction gratings ; Exact sciences and technology ; Fiber optics ; Fibre ; Fibre Bragg Grating ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Gratings (spectra) ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Optics ; OTDR ; Other fiber-optical devices ; Physics ; Quasi-distributed sensor ; Reflectometry ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Sensors, gyros ; Spectra ; Temperature sensor ; Wavelengths</subject><ispartof>Optics and lasers in engineering, 2009-03, Vol.47 (3), p.412-418</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</citedby><cites>FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21330443$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crunelle, C.</creatorcontrib><creatorcontrib>Caucheteur, C.</creatorcontrib><creatorcontrib>Wuilpart, M.</creatorcontrib><creatorcontrib>Mégret, P.</creatorcontrib><title>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</title><title>Optics and lasers in engineering</title><description>Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs.
In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor.</description><subject>Devices</subject><subject>Diffraction gratings</subject><subject>Exact sciences and technology</subject><subject>Fiber optics</subject><subject>Fibre</subject><subject>Fibre Bragg Grating</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Gratings (spectra)</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Optics</subject><subject>OTDR</subject><subject>Other fiber-optical devices</subject><subject>Physics</subject><subject>Quasi-distributed sensor</subject><subject>Reflectometry</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Sensors, gyros</subject><subject>Spectra</subject><subject>Temperature sensor</subject><subject>Wavelengths</subject><issn>0143-8166</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVoIdu0vyG-ND3ZHVm2LB-TkKSFQCm0ZzGWx44WW9pKciD_PgobckxPgsf3ZjTvMXbOoeLA5fd95Q9pwUhurmoAVYGsoIYTtuOqEyUIqD-wHfBGlIpLeco-xbiH7Gw437HH3xtGW442pmCHLdFYJFoPFDBtgYo8NfpQGL8O1lk3F7d2yPJVwHku7jKUtVigO7p8wKUINC1kkl8phacsmwdn_21UWJcoBD9nj3ef2ccJl0hfXt8z9vf25s_1j_L-193P68v70jSgUqmmsSbgfdcCtahkN6p-GAVOAyIobJqBcxhlLesWJylFb8zQoZTYT5xjq8QZ-3acewg-fyImvdpoaFnQkd-i7nMOfddDl8mLd0khmpYr2WawO4Im-BjztfoQ7IrhSXPQL43ovX5rRL80okHq3Eh2fn1dgdHgMgV0xsY3e82FgKYRmbs8cpSTebQUdDSWnKHRhpysHr39765n3nWpWA</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Crunelle, C.</creator><creator>Caucheteur, C.</creator><creator>Wuilpart, M.</creator><creator>Mégret, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090301</creationdate><title>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</title><author>Crunelle, C. ; Caucheteur, C. ; Wuilpart, M. ; Mégret, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Devices</topic><topic>Diffraction gratings</topic><topic>Exact sciences and technology</topic><topic>Fiber optics</topic><topic>Fibre</topic><topic>Fibre Bragg Grating</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Gratings (spectra)</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Optics</topic><topic>OTDR</topic><topic>Other fiber-optical devices</topic><topic>Physics</topic><topic>Quasi-distributed sensor</topic><topic>Reflectometry</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Sensors, gyros</topic><topic>Spectra</topic><topic>Temperature sensor</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crunelle, C.</creatorcontrib><creatorcontrib>Caucheteur, C.</creatorcontrib><creatorcontrib>Wuilpart, M.</creatorcontrib><creatorcontrib>Mégret, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and lasers in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crunelle, C.</au><au>Caucheteur, C.</au><au>Wuilpart, M.</au><au>Mégret, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation</atitle><jtitle>Optics and lasers in engineering</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>47</volume><issue>3</issue><spage>412</spage><epage>418</epage><pages>412-418</pages><issn>0143-8166</issn><eissn>1873-0302</eissn><coden>OLENDN</coden><abstract>Quasi-distributed sensors based on Fibre Bragg Gratings (FBG) usually deal with the concatenation of FBGs of different Bragg wavelengths analyzed through wavelength-sensitive devices. In these sensors, a given wavelengths range is dedicated to one particular FBG. The number of sensing points is directly limited by the source and detector spectral ranges, and by the wavelength spacing between two gratings. This spacing is linked to the maximum possible excursion of the physical parameter to be measured-before superimposition of the reflection spectra of the FBGs.
In this paper, an original interrogating device is presented, that allows a very large number of concatenated gratings to be addressed. In this scheme, identical FBGs (same Bragg wavelength and same low reflectivity) are interrogated by the Optical Time Domain Reflectometry technique, for which a commercial device has been extended to a wavelength-tunable system, within an automated experimental set-up. Detection and localization of an important amount of sensing points along a unique optical fibre is demonstrated. Repeatability measurements did exhibit the very good accuracy of the presented sensor.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2008.06.020</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-8166 |
ispartof | Optics and lasers in engineering, 2009-03, Vol.47 (3), p.412-418 |
issn | 0143-8166 1873-0302 |
language | eng |
recordid | cdi_proquest_miscellaneous_901697907 |
source | Elsevier |
subjects | Devices Diffraction gratings Exact sciences and technology Fiber optics Fibre Fibre Bragg Grating Fundamental areas of phenomenology (including applications) General equipment and techniques Gratings (spectra) Instruments, apparatus, components and techniques common to several branches of physics and astronomy Optics OTDR Other fiber-optical devices Physics Quasi-distributed sensor Reflectometry Sensors Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Sensors, gyros Spectra Temperature sensor Wavelengths |
title | Quasi-distributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-distributed%20temperature%20sensor%20combining%20Fibre%20Bragg%20Gratings%20and%20temporal%20reflectometry%20technique%20interrogation&rft.jtitle=Optics%20and%20lasers%20in%20engineering&rft.au=Crunelle,%20C.&rft.date=2009-03-01&rft.volume=47&rft.issue=3&rft.spage=412&rft.epage=418&rft.pages=412-418&rft.issn=0143-8166&rft.eissn=1873-0302&rft.coden=OLENDN&rft_id=info:doi/10.1016/j.optlaseng.2008.06.020&rft_dat=%3Cproquest_cross%3E901697907%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8fd2e019750e5a867d89bd3afbaa08a44b110d62625af6639ccb7a66a9f11a583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33451865&rft_id=info:pmid/&rfr_iscdi=true |