Loading…

Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization

The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2003-06, Vol.50 (6), p.1467-1474
Main Authors: Cheng, C.F., Poon, V.M.C., Kok, C.W., Chan, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53
cites cdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53
container_end_page 1474
container_issue 6
container_start_page 1467
container_title IEEE transactions on electron devices
container_volume 50
creator Cheng, C.F.
Poon, V.M.C.
Kok, C.W.
Chan, M.
description The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.
doi_str_mv 10.1109/TED.2003.813521
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901699458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1213818</ieee_id><sourcerecordid>28326706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</originalsourceid><addsrcrecordid>eNp9kc1vFSEUxYnRxGd17cINcWFX88rXMLBs2tqa1Lipa8LAnZbKQAszbZ6J_7s0r0kTF24g9_A794Z7EPpIyZZSoo-uzk63jBC-VZT3jL5CG9r3Q6elkK_RhhCqOs0Vf4ve1XrbSikE26A_37OHGNI1zhO-LjakdubH5QbP4G5sCnXG4w6n4H5BxDXE4IIHXMC6JTzAs2XMa_K27DBME7gFN2mGxcYuJL868F20C5RWu7KrTY_ht11CTu_Rm8nGCh-e7wP08-vZ1clFd_nj_NvJ8WXnBO2Xjo7SES3kwLwcPKNS89EKTbkgQCdBCQPihbXOMTkMbGKcWjLqifYSpPc9P0CH-753Jd-vUBczh-ogRpsgr9Xotg6tRa8a-eW_JFO8zSCygZ__AW_zWlL7hVFK8F4MjDXoaA-5kmstMJm7Eua2KEOJeUrNtNTMU2pmn1pzfNo7AgC80O1FUcX_AqXUlBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884354722</pqid></control><display><type>article</type><title>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</title><source>IEEE Xplore (Online service)</source><creator>Cheng, C.F. ; Poon, V.M.C. ; Kok, C.W. ; Chan, M.</creator><creatorcontrib>Cheng, C.F. ; Poon, V.M.C. ; Kok, C.W. ; Chan, M.</creatorcontrib><description>The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2003.813521</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Crystallization ; Evolution ; Grain boundaries ; Grain growth ; Grain size ; Impurities ; Mathematical models ; Nickel compounds ; Semiconductor films ; Semiconductor process modeling ; Silicon ; Thin film transistors</subject><ispartof>IEEE transactions on electron devices, 2003-06, Vol.50 (6), p.1467-1474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</citedby><cites>FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1213818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Cheng, C.F.</creatorcontrib><creatorcontrib>Poon, V.M.C.</creatorcontrib><creatorcontrib>Kok, C.W.</creatorcontrib><creatorcontrib>Chan, M.</creatorcontrib><title>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.</description><subject>Annealing</subject><subject>Crystallization</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Impurities</subject><subject>Mathematical models</subject><subject>Nickel compounds</subject><subject>Semiconductor films</subject><subject>Semiconductor process modeling</subject><subject>Silicon</subject><subject>Thin film transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kc1vFSEUxYnRxGd17cINcWFX88rXMLBs2tqa1Lipa8LAnZbKQAszbZ6J_7s0r0kTF24g9_A794Z7EPpIyZZSoo-uzk63jBC-VZT3jL5CG9r3Q6elkK_RhhCqOs0Vf4ve1XrbSikE26A_37OHGNI1zhO-LjakdubH5QbP4G5sCnXG4w6n4H5BxDXE4IIHXMC6JTzAs2XMa_K27DBME7gFN2mGxcYuJL868F20C5RWu7KrTY_ht11CTu_Rm8nGCh-e7wP08-vZ1clFd_nj_NvJ8WXnBO2Xjo7SES3kwLwcPKNS89EKTbkgQCdBCQPihbXOMTkMbGKcWjLqifYSpPc9P0CH-753Jd-vUBczh-ogRpsgr9Xotg6tRa8a-eW_JFO8zSCygZ__AW_zWlL7hVFK8F4MjDXoaA-5kmstMJm7Eua2KEOJeUrNtNTMU2pmn1pzfNo7AgC80O1FUcX_AqXUlBE</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Cheng, C.F.</creator><creator>Poon, V.M.C.</creator><creator>Kok, C.W.</creator><creator>Chan, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030601</creationdate><title>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</title><author>Cheng, C.F. ; Poon, V.M.C. ; Kok, C.W. ; Chan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Annealing</topic><topic>Crystallization</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Impurities</topic><topic>Mathematical models</topic><topic>Nickel compounds</topic><topic>Semiconductor films</topic><topic>Semiconductor process modeling</topic><topic>Silicon</topic><topic>Thin film transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, C.F.</creatorcontrib><creatorcontrib>Poon, V.M.C.</creatorcontrib><creatorcontrib>Kok, C.W.</creatorcontrib><creatorcontrib>Chan, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, C.F.</au><au>Poon, V.M.C.</au><au>Kok, C.W.</au><au>Chan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>50</volume><issue>6</issue><spage>1467</spage><epage>1474</epage><pages>1467-1474</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2003.813521</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2003-06, Vol.50 (6), p.1467-1474
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_901699458
source IEEE Xplore (Online service)
subjects Annealing
Crystallization
Evolution
Grain boundaries
Grain growth
Grain size
Impurities
Mathematical models
Nickel compounds
Semiconductor films
Semiconductor process modeling
Silicon
Thin film transistors
title Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20grain%20growth%20mechanism%20by%20nickel%20silicide%20reactive%20grain%20boundary%20effect%20in%20metal-induced-lateral-crystallization&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Cheng,%20C.F.&rft.date=2003-06-01&rft.volume=50&rft.issue=6&rft.spage=1467&rft.epage=1474&rft.pages=1467-1474&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2003.813521&rft_dat=%3Cproquest_cross%3E28326706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884354722&rft_id=info:pmid/&rft_ieee_id=1213818&rfr_iscdi=true