Loading…
Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization
The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized...
Saved in:
Published in: | IEEE transactions on electron devices 2003-06, Vol.50 (6), p.1467-1474 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53 |
container_end_page | 1474 |
container_issue | 6 |
container_start_page | 1467 |
container_title | IEEE transactions on electron devices |
container_volume | 50 |
creator | Cheng, C.F. Poon, V.M.C. Kok, C.W. Chan, M. |
description | The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film. |
doi_str_mv | 10.1109/TED.2003.813521 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901699458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1213818</ieee_id><sourcerecordid>28326706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</originalsourceid><addsrcrecordid>eNp9kc1vFSEUxYnRxGd17cINcWFX88rXMLBs2tqa1Lipa8LAnZbKQAszbZ6J_7s0r0kTF24g9_A794Z7EPpIyZZSoo-uzk63jBC-VZT3jL5CG9r3Q6elkK_RhhCqOs0Vf4ve1XrbSikE26A_37OHGNI1zhO-LjakdubH5QbP4G5sCnXG4w6n4H5BxDXE4IIHXMC6JTzAs2XMa_K27DBME7gFN2mGxcYuJL868F20C5RWu7KrTY_ht11CTu_Rm8nGCh-e7wP08-vZ1clFd_nj_NvJ8WXnBO2Xjo7SES3kwLwcPKNS89EKTbkgQCdBCQPihbXOMTkMbGKcWjLqifYSpPc9P0CH-753Jd-vUBczh-ogRpsgr9Xotg6tRa8a-eW_JFO8zSCygZ__AW_zWlL7hVFK8F4MjDXoaA-5kmstMJm7Eua2KEOJeUrNtNTMU2pmn1pzfNo7AgC80O1FUcX_AqXUlBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884354722</pqid></control><display><type>article</type><title>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</title><source>IEEE Xplore (Online service)</source><creator>Cheng, C.F. ; Poon, V.M.C. ; Kok, C.W. ; Chan, M.</creator><creatorcontrib>Cheng, C.F. ; Poon, V.M.C. ; Kok, C.W. ; Chan, M.</creatorcontrib><description>The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2003.813521</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Crystallization ; Evolution ; Grain boundaries ; Grain growth ; Grain size ; Impurities ; Mathematical models ; Nickel compounds ; Semiconductor films ; Semiconductor process modeling ; Silicon ; Thin film transistors</subject><ispartof>IEEE transactions on electron devices, 2003-06, Vol.50 (6), p.1467-1474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</citedby><cites>FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1213818$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Cheng, C.F.</creatorcontrib><creatorcontrib>Poon, V.M.C.</creatorcontrib><creatorcontrib>Kok, C.W.</creatorcontrib><creatorcontrib>Chan, M.</creatorcontrib><title>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.</description><subject>Annealing</subject><subject>Crystallization</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Impurities</subject><subject>Mathematical models</subject><subject>Nickel compounds</subject><subject>Semiconductor films</subject><subject>Semiconductor process modeling</subject><subject>Silicon</subject><subject>Thin film transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kc1vFSEUxYnRxGd17cINcWFX88rXMLBs2tqa1Lipa8LAnZbKQAszbZ6J_7s0r0kTF24g9_A794Z7EPpIyZZSoo-uzk63jBC-VZT3jL5CG9r3Q6elkK_RhhCqOs0Vf4ve1XrbSikE26A_37OHGNI1zhO-LjakdubH5QbP4G5sCnXG4w6n4H5BxDXE4IIHXMC6JTzAs2XMa_K27DBME7gFN2mGxcYuJL868F20C5RWu7KrTY_ht11CTu_Rm8nGCh-e7wP08-vZ1clFd_nj_NvJ8WXnBO2Xjo7SES3kwLwcPKNS89EKTbkgQCdBCQPihbXOMTkMbGKcWjLqifYSpPc9P0CH-753Jd-vUBczh-ogRpsgr9Xotg6tRa8a-eW_JFO8zSCygZ__AW_zWlL7hVFK8F4MjDXoaA-5kmstMJm7Eua2KEOJeUrNtNTMU2pmn1pzfNo7AgC80O1FUcX_AqXUlBE</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Cheng, C.F.</creator><creator>Poon, V.M.C.</creator><creator>Kok, C.W.</creator><creator>Chan, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030601</creationdate><title>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</title><author>Cheng, C.F. ; Poon, V.M.C. ; Kok, C.W. ; Chan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Annealing</topic><topic>Crystallization</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Impurities</topic><topic>Mathematical models</topic><topic>Nickel compounds</topic><topic>Semiconductor films</topic><topic>Semiconductor process modeling</topic><topic>Silicon</topic><topic>Thin film transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, C.F.</creatorcontrib><creatorcontrib>Poon, V.M.C.</creatorcontrib><creatorcontrib>Kok, C.W.</creatorcontrib><creatorcontrib>Chan, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, C.F.</au><au>Poon, V.M.C.</au><au>Kok, C.W.</au><au>Chan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>50</volume><issue>6</issue><spage>1467</spage><epage>1474</epage><pages>1467-1474</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2003.813521</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2003-06, Vol.50 (6), p.1467-1474 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_901699458 |
source | IEEE Xplore (Online service) |
subjects | Annealing Crystallization Evolution Grain boundaries Grain growth Grain size Impurities Mathematical models Nickel compounds Semiconductor films Semiconductor process modeling Silicon Thin film transistors |
title | Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20grain%20growth%20mechanism%20by%20nickel%20silicide%20reactive%20grain%20boundary%20effect%20in%20metal-induced-lateral-crystallization&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Cheng,%20C.F.&rft.date=2003-06-01&rft.volume=50&rft.issue=6&rft.spage=1467&rft.epage=1474&rft.pages=1467-1474&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2003.813521&rft_dat=%3Cproquest_cross%3E28326706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-1b6c094672d67d21693ba491340e1f4102e0d4aacc26772f231a0b9f156e6dd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884354722&rft_id=info:pmid/&rft_ieee_id=1213818&rfr_iscdi=true |