Loading…

Smoothed Aggregation Multigrid for Markov Chains

A smoothed aggregation multigrid method is presented for the numerical calculation of the stationary probability vector of an irreducible sparse Markov chain. It is shown how smoothing the interpolation and restriction operators can dramatically increase the efficiency of aggregation multigrid metho...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on scientific computing 2010-01, Vol.32 (1), p.40-61
Main Authors: De Sterck, H, Manteuffel, T A, McCormick, S F, Miller, K, Pearson, J, Ruge, J, Sanders, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-817c7cec977dd3a4c8cc4d1f432bdd5ce73ba55bdfc282662503e6f8534db5b13
cites cdi_FETCH-LOGICAL-c323t-817c7cec977dd3a4c8cc4d1f432bdd5ce73ba55bdfc282662503e6f8534db5b13
container_end_page 61
container_issue 1
container_start_page 40
container_title SIAM journal on scientific computing
container_volume 32
creator De Sterck, H
Manteuffel, T A
McCormick, S F
Miller, K
Pearson, J
Ruge, J
Sanders, G
description A smoothed aggregation multigrid method is presented for the numerical calculation of the stationary probability vector of an irreducible sparse Markov chain. It is shown how smoothing the interpolation and restriction operators can dramatically increase the efficiency of aggregation multigrid methods for Markov chains that have been proposed in the literature. The proposed smoothing approach is inspired by smoothed aggregation multigrid for linear systems, supplemented with a new lumping technique that assures well-posedness of the coarse-level problems: the coarse-level operators are singular M-matrices on all levels, resulting in strictly positive coarse-level corrections on all levels. Numerical results show how these methods lead to nearly optimal multigrid efficiency for an extensive set of test problems, both when geometric and algebraic aggregation strategies are used. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/080719157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901704445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411593841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-817c7cec977dd3a4c8cc4d1f432bdd5ce73ba55bdfc282662503e6f8534db5b13</originalsourceid><addsrcrecordid>eNpdkE1LxDAYhIMouK4e_AfFi3iovvlOj8viF-ziQT2HNEm7XdtmTVrBf2-XFQ-eZgYehmEQusRwizGVd6BA4gJzeYRmGAqeT0ke771guSKSn6KzlLYAWLCCzBC8diEMG--yRV1HX5uhCX22HtuhqWPjsirEbG3iR_jKlhvT9OkcnVSmTf7iV-fo_eH-bfmUr14en5eLVW4poUOusLTSeltI6Rw1zCprmcMVo6R0jlsvaWk4L11liSJCEA7Ui0pxylzJS0zn6PrQu4vhc_Rp0F2TrG9b0_swJl0AlsAY4xN59Y_chjH20zitFIAEDmKCbg6QjSGl6Cu9i01n4rfGoPfP6b_n6A-iPV6H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880070506</pqid></control><display><type>article</type><title>Smoothed Aggregation Multigrid for Markov Chains</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>De Sterck, H ; Manteuffel, T A ; McCormick, S F ; Miller, K ; Pearson, J ; Ruge, J ; Sanders, G</creator><creatorcontrib>De Sterck, H ; Manteuffel, T A ; McCormick, S F ; Miller, K ; Pearson, J ; Ruge, J ; Sanders, G</creatorcontrib><description>A smoothed aggregation multigrid method is presented for the numerical calculation of the stationary probability vector of an irreducible sparse Markov chain. It is shown how smoothing the interpolation and restriction operators can dramatically increase the efficiency of aggregation multigrid methods for Markov chains that have been proposed in the literature. The proposed smoothing approach is inspired by smoothed aggregation multigrid for linear systems, supplemented with a new lumping technique that assures well-posedness of the coarse-level problems: the coarse-level operators are singular M-matrices on all levels, resulting in strictly positive coarse-level corrections on all levels. Numerical results show how these methods lead to nearly optimal multigrid efficiency for an extensive set of test problems, both when geometric and algebraic aggregation strategies are used. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/080719157</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Agglomeration ; Algebra ; Computational efficiency ; Linear systems ; Markov analysis ; Markov chains ; Mathematical analysis ; Multigrid methods ; Operators ; Smoothing ; Studies</subject><ispartof>SIAM journal on scientific computing, 2010-01, Vol.32 (1), p.40-61</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-817c7cec977dd3a4c8cc4d1f432bdd5ce73ba55bdfc282662503e6f8534db5b13</citedby><cites>FETCH-LOGICAL-c323t-817c7cec977dd3a4c8cc4d1f432bdd5ce73ba55bdfc282662503e6f8534db5b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/880070506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>De Sterck, H</creatorcontrib><creatorcontrib>Manteuffel, T A</creatorcontrib><creatorcontrib>McCormick, S F</creatorcontrib><creatorcontrib>Miller, K</creatorcontrib><creatorcontrib>Pearson, J</creatorcontrib><creatorcontrib>Ruge, J</creatorcontrib><creatorcontrib>Sanders, G</creatorcontrib><title>Smoothed Aggregation Multigrid for Markov Chains</title><title>SIAM journal on scientific computing</title><description>A smoothed aggregation multigrid method is presented for the numerical calculation of the stationary probability vector of an irreducible sparse Markov chain. It is shown how smoothing the interpolation and restriction operators can dramatically increase the efficiency of aggregation multigrid methods for Markov chains that have been proposed in the literature. The proposed smoothing approach is inspired by smoothed aggregation multigrid for linear systems, supplemented with a new lumping technique that assures well-posedness of the coarse-level problems: the coarse-level operators are singular M-matrices on all levels, resulting in strictly positive coarse-level corrections on all levels. Numerical results show how these methods lead to nearly optimal multigrid efficiency for an extensive set of test problems, both when geometric and algebraic aggregation strategies are used. [PUBLICATION ABSTRACT]</description><subject>Agglomeration</subject><subject>Algebra</subject><subject>Computational efficiency</subject><subject>Linear systems</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Multigrid methods</subject><subject>Operators</subject><subject>Smoothing</subject><subject>Studies</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkE1LxDAYhIMouK4e_AfFi3iovvlOj8viF-ziQT2HNEm7XdtmTVrBf2-XFQ-eZgYehmEQusRwizGVd6BA4gJzeYRmGAqeT0ke771guSKSn6KzlLYAWLCCzBC8diEMG--yRV1HX5uhCX22HtuhqWPjsirEbG3iR_jKlhvT9OkcnVSmTf7iV-fo_eH-bfmUr14en5eLVW4poUOusLTSeltI6Rw1zCprmcMVo6R0jlsvaWk4L11liSJCEA7Ui0pxylzJS0zn6PrQu4vhc_Rp0F2TrG9b0_swJl0AlsAY4xN59Y_chjH20zitFIAEDmKCbg6QjSGl6Cu9i01n4rfGoPfP6b_n6A-iPV6H</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>De Sterck, H</creator><creator>Manteuffel, T A</creator><creator>McCormick, S F</creator><creator>Miller, K</creator><creator>Pearson, J</creator><creator>Ruge, J</creator><creator>Sanders, G</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>Smoothed Aggregation Multigrid for Markov Chains</title><author>De Sterck, H ; Manteuffel, T A ; McCormick, S F ; Miller, K ; Pearson, J ; Ruge, J ; Sanders, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-817c7cec977dd3a4c8cc4d1f432bdd5ce73ba55bdfc282662503e6f8534db5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agglomeration</topic><topic>Algebra</topic><topic>Computational efficiency</topic><topic>Linear systems</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Multigrid methods</topic><topic>Operators</topic><topic>Smoothing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Sterck, H</creatorcontrib><creatorcontrib>Manteuffel, T A</creatorcontrib><creatorcontrib>McCormick, S F</creatorcontrib><creatorcontrib>Miller, K</creatorcontrib><creatorcontrib>Pearson, J</creatorcontrib><creatorcontrib>Ruge, J</creatorcontrib><creatorcontrib>Sanders, G</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Sterck, H</au><au>Manteuffel, T A</au><au>McCormick, S F</au><au>Miller, K</au><au>Pearson, J</au><au>Ruge, J</au><au>Sanders, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothed Aggregation Multigrid for Markov Chains</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>32</volume><issue>1</issue><spage>40</spage><epage>61</epage><pages>40-61</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>A smoothed aggregation multigrid method is presented for the numerical calculation of the stationary probability vector of an irreducible sparse Markov chain. It is shown how smoothing the interpolation and restriction operators can dramatically increase the efficiency of aggregation multigrid methods for Markov chains that have been proposed in the literature. The proposed smoothing approach is inspired by smoothed aggregation multigrid for linear systems, supplemented with a new lumping technique that assures well-posedness of the coarse-level problems: the coarse-level operators are singular M-matrices on all levels, resulting in strictly positive coarse-level corrections on all levels. Numerical results show how these methods lead to nearly optimal multigrid efficiency for an extensive set of test problems, both when geometric and algebraic aggregation strategies are used. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080719157</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2010-01, Vol.32 (1), p.40-61
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_miscellaneous_901704445
source ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Agglomeration
Algebra
Computational efficiency
Linear systems
Markov analysis
Markov chains
Mathematical analysis
Multigrid methods
Operators
Smoothing
Studies
title Smoothed Aggregation Multigrid for Markov Chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothed%20Aggregation%20Multigrid%20for%20Markov%20Chains&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=De%20Sterck,%20H&rft.date=2010-01-01&rft.volume=32&rft.issue=1&rft.spage=40&rft.epage=61&rft.pages=40-61&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/080719157&rft_dat=%3Cproquest_cross%3E2411593841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-817c7cec977dd3a4c8cc4d1f432bdd5ce73ba55bdfc282662503e6f8534db5b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880070506&rft_id=info:pmid/&rfr_iscdi=true