Loading…

Sample Functions of Stochastic Measures and Besov Spaces

This paper considers stochastic measures, i.e., sets of functions given on the Borel sigma-algebra in [0,1]^sup d^ sigma-additive with respect to probability. It is shown that realizations of continuous random functions generated by stochastic measures belong to the Besov spaces under some general s...

Full description

Saved in:
Bibliographic Details
Published in:Theory of probability and its applications 2010-01, Vol.54 (1), p.160-168
Main Author: Radchenko, V N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c304t-791e16c97cddb8ebc57338c80e40950cd17d0455a930efde08b0731d384dfa383
cites cdi_FETCH-LOGICAL-c304t-791e16c97cddb8ebc57338c80e40950cd17d0455a930efde08b0731d384dfa383
container_end_page 168
container_issue 1
container_start_page 160
container_title Theory of probability and its applications
container_volume 54
creator Radchenko, V N
description This paper considers stochastic measures, i.e., sets of functions given on the Borel sigma-algebra in [0,1]^sup d^ sigma-additive with respect to probability. It is shown that realizations of continuous random functions generated by stochastic measures belong to the Besov spaces under some general sufficiently assumptions. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/S0040585X97984048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901704797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411608311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-791e16c97cddb8ebc57338c80e40950cd17d0455a930efde08b0731d384dfa383</originalsourceid><addsrcrecordid>eNplkMFKAzEURYMoWKsf4C64cTX60iRNstRiVai4GAV3IU3e4JTpZExmBP--U-pKV3dxDpfLJeSSwQ1jXN2WAAKklh9GGS1A6CMyYWBkoWbMHJPJHhd7fkrOct4AwHzG5ITo0m27BulyaH1fxzbTWNGyj_7T5b729AVdHhJm6tpA7zHHb1p2zmM-JyeVazJe_OaUvC8f3hZPxer18Xlxtyo8B9EXyjBkc2-UD2Gtce2l4lx7DSjGdeADUwGElM5wwCog6DUozgLXIlSOaz4l14feLsWvAXNvt3X22DSuxThka4ApEMqo0bz6Y27ikNpxnNUaQIHScpTYQfIp5pywsl2qty79WAZ2_6T99yTfAU6lZI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880070785</pqid></control><display><type>article</type><title>Sample Functions of Stochastic Measures and Besov Spaces</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Radchenko, V N</creator><creatorcontrib>Radchenko, V N</creatorcontrib><description>This paper considers stochastic measures, i.e., sets of functions given on the Borel sigma-algebra in [0,1]^sup d^ sigma-additive with respect to probability. It is shown that realizations of continuous random functions generated by stochastic measures belong to the Besov spaces under some general sufficiently assumptions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97984048</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Mathematical functions ; Probability distribution ; Random variables ; Stochastic models ; Stochasticity ; Studies</subject><ispartof>Theory of probability and its applications, 2010-01, Vol.54 (1), p.160-168</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-791e16c97cddb8ebc57338c80e40950cd17d0455a930efde08b0731d384dfa383</citedby><cites>FETCH-LOGICAL-c304t-791e16c97cddb8ebc57338c80e40950cd17d0455a930efde08b0731d384dfa383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/880070785?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Radchenko, V N</creatorcontrib><title>Sample Functions of Stochastic Measures and Besov Spaces</title><title>Theory of probability and its applications</title><description>This paper considers stochastic measures, i.e., sets of functions given on the Borel sigma-algebra in [0,1]^sup d^ sigma-additive with respect to probability. It is shown that realizations of continuous random functions generated by stochastic measures belong to the Besov spaces under some general sufficiently assumptions. [PUBLICATION ABSTRACT]</description><subject>Mathematical functions</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Studies</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkMFKAzEURYMoWKsf4C64cTX60iRNstRiVai4GAV3IU3e4JTpZExmBP--U-pKV3dxDpfLJeSSwQ1jXN2WAAKklh9GGS1A6CMyYWBkoWbMHJPJHhd7fkrOct4AwHzG5ITo0m27BulyaH1fxzbTWNGyj_7T5b729AVdHhJm6tpA7zHHb1p2zmM-JyeVazJe_OaUvC8f3hZPxer18Xlxtyo8B9EXyjBkc2-UD2Gtce2l4lx7DSjGdeADUwGElM5wwCog6DUozgLXIlSOaz4l14feLsWvAXNvt3X22DSuxThka4ApEMqo0bz6Y27ikNpxnNUaQIHScpTYQfIp5pywsl2qty79WAZ2_6T99yTfAU6lZI8</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Radchenko, V N</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>Sample Functions of Stochastic Measures and Besov Spaces</title><author>Radchenko, V N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-791e16c97cddb8ebc57338c80e40950cd17d0455a930efde08b0731d384dfa383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Mathematical functions</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radchenko, V N</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radchenko, V N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Functions of Stochastic Measures and Besov Spaces</atitle><jtitle>Theory of probability and its applications</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>54</volume><issue>1</issue><spage>160</spage><epage>168</epage><pages>160-168</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>This paper considers stochastic measures, i.e., sets of functions given on the Borel sigma-algebra in [0,1]^sup d^ sigma-additive with respect to probability. It is shown that realizations of continuous random functions generated by stochastic measures belong to the Besov spaces under some general sufficiently assumptions. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97984048</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-585X
ispartof Theory of probability and its applications, 2010-01, Vol.54 (1), p.160-168
issn 0040-585X
1095-7219
language eng
recordid cdi_proquest_miscellaneous_901704797
source ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Mathematical functions
Probability distribution
Random variables
Stochastic models
Stochasticity
Studies
title Sample Functions of Stochastic Measures and Besov Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Functions%20of%20Stochastic%20Measures%20and%20Besov%20Spaces&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Radchenko,%20V%20N&rft.date=2010-01-01&rft.volume=54&rft.issue=1&rft.spage=160&rft.epage=168&rft.pages=160-168&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97984048&rft_dat=%3Cproquest_cross%3E2411608311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-791e16c97cddb8ebc57338c80e40950cd17d0455a930efde08b0731d384dfa383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880070785&rft_id=info:pmid/&rfr_iscdi=true