Loading…

Patches-based Markov random field model for multiple object tracking under occlusion

In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which comp...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing 2010-05, Vol.90 (5), p.1518-1529
Main Authors: Wu, Mingjun, Peng, Xianrong, Zhang, Qiheng, Zhao, Rujin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3
cites cdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3
container_end_page 1529
container_issue 5
container_start_page 1518
container_title Signal processing
container_volume 90
creator Wu, Mingjun
Peng, Xianrong
Zhang, Qiheng
Zhao, Rujin
description In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods.
doi_str_mv 10.1016/j.sigpro.2009.10.023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901708766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168409004563</els_id><sourcerecordid>901708766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpoNtN_kEPuoSevBlZtmVfAiW0SSGlOWzOQh6PttrI1layF_Lvq2VDjzkNPN6bmfcx9kXARoBobvab5HaHGDYlQJelDZTyA1uJVpWFqmv1ka2yrS5E01af2OeU9gAgZAMrtn0yM_6hVPQm0cB_mfgSjjyaaQgjt478wMcwkOc2RD4ufnYHTzz0e8KZz9Hgi5t2fJkGijwg-iW5MF2yC2t8oqu3uWbPP75v7x6Kx9_3P---PRYom3YuSlsOPVhEkgpI9daItlEGCWRtK8CqqlHWUNYVyQ4raUGZrFvbdkJS38s1-3rem7v_XSjNenQJyXszUViS7kAoaFXTZGd1dmIMKUWy-hDdaOKrFqBPDPVenxnqE8OTmhnm2PXbAZPQeJu5oEv_s2XZiarLz6zZ7dlHue3RUdQJHU1Ig4sZlB6Ce__QP-b3iqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901708766</pqid></control><display><type>article</type><title>Patches-based Markov random field model for multiple object tracking under occlusion</title><source>Elsevier</source><creator>Wu, Mingjun ; Peng, Xianrong ; Zhang, Qiheng ; Zhao, Rujin</creator><creatorcontrib>Wu, Mingjun ; Peng, Xianrong ; Zhang, Qiheng ; Zhao, Rujin</creatorcontrib><description>In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2009.10.023</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Appearance model ; Applied sciences ; Classification ; Dealing ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Markov random field ; Mathematical models ; Multiple object tracking ; Occlusion ; Optimization ; Pattern recognition ; Representations ; Signal and communications theory ; Signal processing ; Signal, noise ; Tasks ; Telecommunications and information theory ; Tracking</subject><ispartof>Signal processing, 2010-05, Vol.90 (5), p.1518-1529</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</citedby><cites>FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22914991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Mingjun</creatorcontrib><creatorcontrib>Peng, Xianrong</creatorcontrib><creatorcontrib>Zhang, Qiheng</creatorcontrib><creatorcontrib>Zhao, Rujin</creatorcontrib><title>Patches-based Markov random field model for multiple object tracking under occlusion</title><title>Signal processing</title><description>In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods.</description><subject>Appearance model</subject><subject>Applied sciences</subject><subject>Classification</subject><subject>Dealing</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Markov random field</subject><subject>Mathematical models</subject><subject>Multiple object tracking</subject><subject>Occlusion</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Representations</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Tasks</subject><subject>Telecommunications and information theory</subject><subject>Tracking</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVpoNtN_kEPuoSevBlZtmVfAiW0SSGlOWzOQh6PttrI1layF_Lvq2VDjzkNPN6bmfcx9kXARoBobvab5HaHGDYlQJelDZTyA1uJVpWFqmv1ka2yrS5E01af2OeU9gAgZAMrtn0yM_6hVPQm0cB_mfgSjjyaaQgjt478wMcwkOc2RD4ufnYHTzz0e8KZz9Hgi5t2fJkGijwg-iW5MF2yC2t8oqu3uWbPP75v7x6Kx9_3P---PRYom3YuSlsOPVhEkgpI9daItlEGCWRtK8CqqlHWUNYVyQ4raUGZrFvbdkJS38s1-3rem7v_XSjNenQJyXszUViS7kAoaFXTZGd1dmIMKUWy-hDdaOKrFqBPDPVenxnqE8OTmhnm2PXbAZPQeJu5oEv_s2XZiarLz6zZ7dlHue3RUdQJHU1Ig4sZlB6Ce__QP-b3iqQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Wu, Mingjun</creator><creator>Peng, Xianrong</creator><creator>Zhang, Qiheng</creator><creator>Zhao, Rujin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>Patches-based Markov random field model for multiple object tracking under occlusion</title><author>Wu, Mingjun ; Peng, Xianrong ; Zhang, Qiheng ; Zhao, Rujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Appearance model</topic><topic>Applied sciences</topic><topic>Classification</topic><topic>Dealing</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Markov random field</topic><topic>Mathematical models</topic><topic>Multiple object tracking</topic><topic>Occlusion</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Representations</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Tasks</topic><topic>Telecommunications and information theory</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mingjun</creatorcontrib><creatorcontrib>Peng, Xianrong</creatorcontrib><creatorcontrib>Zhang, Qiheng</creatorcontrib><creatorcontrib>Zhao, Rujin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Mingjun</au><au>Peng, Xianrong</au><au>Zhang, Qiheng</au><au>Zhao, Rujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patches-based Markov random field model for multiple object tracking under occlusion</atitle><jtitle>Signal processing</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>90</volume><issue>5</issue><spage>1518</spage><epage>1529</epage><pages>1518-1529</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2009.10.023</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2010-05, Vol.90 (5), p.1518-1529
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_901708766
source Elsevier
subjects Appearance model
Applied sciences
Classification
Dealing
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
Markov random field
Mathematical models
Multiple object tracking
Occlusion
Optimization
Pattern recognition
Representations
Signal and communications theory
Signal processing
Signal, noise
Tasks
Telecommunications and information theory
Tracking
title Patches-based Markov random field model for multiple object tracking under occlusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patches-based%20Markov%20random%20field%20model%20for%20multiple%20object%20tracking%20under%20occlusion&rft.jtitle=Signal%20processing&rft.au=Wu,%20Mingjun&rft.date=2010-05-01&rft.volume=90&rft.issue=5&rft.spage=1518&rft.epage=1529&rft.pages=1518-1529&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2009.10.023&rft_dat=%3Cproquest_cross%3E901708766%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901708766&rft_id=info:pmid/&rfr_iscdi=true