Loading…
Patches-based Markov random field model for multiple object tracking under occlusion
In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which comp...
Saved in:
Published in: | Signal processing 2010-05, Vol.90 (5), p.1518-1529 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3 |
container_end_page | 1529 |
container_issue | 5 |
container_start_page | 1518 |
container_title | Signal processing |
container_volume | 90 |
creator | Wu, Mingjun Peng, Xianrong Zhang, Qiheng Zhao, Rujin |
description | In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods. |
doi_str_mv | 10.1016/j.sigpro.2009.10.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901708766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168409004563</els_id><sourcerecordid>901708766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpoNtN_kEPuoSevBlZtmVfAiW0SSGlOWzOQh6PttrI1layF_Lvq2VDjzkNPN6bmfcx9kXARoBobvab5HaHGDYlQJelDZTyA1uJVpWFqmv1ka2yrS5E01af2OeU9gAgZAMrtn0yM_6hVPQm0cB_mfgSjjyaaQgjt478wMcwkOc2RD4ufnYHTzz0e8KZz9Hgi5t2fJkGijwg-iW5MF2yC2t8oqu3uWbPP75v7x6Kx9_3P---PRYom3YuSlsOPVhEkgpI9daItlEGCWRtK8CqqlHWUNYVyQ4raUGZrFvbdkJS38s1-3rem7v_XSjNenQJyXszUViS7kAoaFXTZGd1dmIMKUWy-hDdaOKrFqBPDPVenxnqE8OTmhnm2PXbAZPQeJu5oEv_s2XZiarLz6zZ7dlHue3RUdQJHU1Ig4sZlB6Ce__QP-b3iqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901708766</pqid></control><display><type>article</type><title>Patches-based Markov random field model for multiple object tracking under occlusion</title><source>Elsevier</source><creator>Wu, Mingjun ; Peng, Xianrong ; Zhang, Qiheng ; Zhao, Rujin</creator><creatorcontrib>Wu, Mingjun ; Peng, Xianrong ; Zhang, Qiheng ; Zhao, Rujin</creatorcontrib><description>In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2009.10.023</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Appearance model ; Applied sciences ; Classification ; Dealing ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Markov random field ; Mathematical models ; Multiple object tracking ; Occlusion ; Optimization ; Pattern recognition ; Representations ; Signal and communications theory ; Signal processing ; Signal, noise ; Tasks ; Telecommunications and information theory ; Tracking</subject><ispartof>Signal processing, 2010-05, Vol.90 (5), p.1518-1529</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</citedby><cites>FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22914991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Mingjun</creatorcontrib><creatorcontrib>Peng, Xianrong</creatorcontrib><creatorcontrib>Zhang, Qiheng</creatorcontrib><creatorcontrib>Zhao, Rujin</creatorcontrib><title>Patches-based Markov random field model for multiple object tracking under occlusion</title><title>Signal processing</title><description>In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods.</description><subject>Appearance model</subject><subject>Applied sciences</subject><subject>Classification</subject><subject>Dealing</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Markov random field</subject><subject>Mathematical models</subject><subject>Multiple object tracking</subject><subject>Occlusion</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Representations</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Tasks</subject><subject>Telecommunications and information theory</subject><subject>Tracking</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVpoNtN_kEPuoSevBlZtmVfAiW0SSGlOWzOQh6PttrI1layF_Lvq2VDjzkNPN6bmfcx9kXARoBobvab5HaHGDYlQJelDZTyA1uJVpWFqmv1ka2yrS5E01af2OeU9gAgZAMrtn0yM_6hVPQm0cB_mfgSjjyaaQgjt478wMcwkOc2RD4ufnYHTzz0e8KZz9Hgi5t2fJkGijwg-iW5MF2yC2t8oqu3uWbPP75v7x6Kx9_3P---PRYom3YuSlsOPVhEkgpI9daItlEGCWRtK8CqqlHWUNYVyQ4raUGZrFvbdkJS38s1-3rem7v_XSjNenQJyXszUViS7kAoaFXTZGd1dmIMKUWy-hDdaOKrFqBPDPVenxnqE8OTmhnm2PXbAZPQeJu5oEv_s2XZiarLz6zZ7dlHue3RUdQJHU1Ig4sZlB6Ce__QP-b3iqQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Wu, Mingjun</creator><creator>Peng, Xianrong</creator><creator>Zhang, Qiheng</creator><creator>Zhao, Rujin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>Patches-based Markov random field model for multiple object tracking under occlusion</title><author>Wu, Mingjun ; Peng, Xianrong ; Zhang, Qiheng ; Zhao, Rujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Appearance model</topic><topic>Applied sciences</topic><topic>Classification</topic><topic>Dealing</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Markov random field</topic><topic>Mathematical models</topic><topic>Multiple object tracking</topic><topic>Occlusion</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Representations</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Tasks</topic><topic>Telecommunications and information theory</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mingjun</creatorcontrib><creatorcontrib>Peng, Xianrong</creatorcontrib><creatorcontrib>Zhang, Qiheng</creatorcontrib><creatorcontrib>Zhao, Rujin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Mingjun</au><au>Peng, Xianrong</au><au>Zhang, Qiheng</au><au>Zhao, Rujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patches-based Markov random field model for multiple object tracking under occlusion</atitle><jtitle>Signal processing</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>90</volume><issue>5</issue><spage>1518</spage><epage>1529</epage><pages>1518-1529</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In multiple object tracking, it is challenging to maintain the correct tracks of objects in the presence of occlusions. The paper proposes a new method to this problem, building on the patch representation of object appearance. We formulate multiple object tracking as classification tasks which competitively use the appearance models of the interacting objects. To obtain the optimal configuration of classification, a patches-based MAP-MRF decision framework is presented to make a global inference based on local spatial information existing between adjacent patches and the maximum a posteriori solution is evaluated exactly with graph cuts. As a result, accurate object identification is achieved. Extensive experiments on several difficult sequences validate that the proposed method is effective in dealing with multiple object occlusion, and comparative results show that our method outperforms the previous methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2009.10.023</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2010-05, Vol.90 (5), p.1518-1529 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_901708766 |
source | Elsevier |
subjects | Appearance model Applied sciences Classification Dealing Detection, estimation, filtering, equalization, prediction Exact sciences and technology Information, signal and communications theory Markov random field Mathematical models Multiple object tracking Occlusion Optimization Pattern recognition Representations Signal and communications theory Signal processing Signal, noise Tasks Telecommunications and information theory Tracking |
title | Patches-based Markov random field model for multiple object tracking under occlusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patches-based%20Markov%20random%20field%20model%20for%20multiple%20object%20tracking%20under%20occlusion&rft.jtitle=Signal%20processing&rft.au=Wu,%20Mingjun&rft.date=2010-05-01&rft.volume=90&rft.issue=5&rft.spage=1518&rft.epage=1529&rft.pages=1518-1529&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2009.10.023&rft_dat=%3Cproquest_cross%3E901708766%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-2f2db0fcce370e7bfa1867ace035f40c445c350254e39c43f07af40ff8913ebb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901708766&rft_id=info:pmid/&rfr_iscdi=true |