Loading…
Status of the LHCb dipole magnet
The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits t...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2004-06, Vol.14 (2), p.509-513 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953 |
container_end_page | 513 |
container_issue | 2 |
container_start_page | 509 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 14 |
creator | Andre, J. Flegel, W. Giudici, P.A. Jamet, O. Losasso, M. |
description | The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported. |
doi_str_mv | 10.1109/TASC.2004.829705 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_901710376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1324843</ieee_id><sourcerecordid>28795109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</originalsourceid><addsrcrecordid>eNqNkcFLwzAUh4MoOKd3wUsR1FNnXtLXNMdR1AkDD5vnkCWpdnTtbNqD_70pHQw8iKf34H3vB-99hFwDnQFQ-bier_IZozSZZUwKiidkAohZzBDwNPQUIc4Y4-fkwvstpZBkCU5ItOp01_uoKaLu00XLRb6JbLlvKhft9EftuktyVujKu6tDnZL356d1voiXby-v-XwZmyQRXWwtGocahU4hoyCZMIXmVps00YJqa9AVFmi6MZYXmBguUDLOjRWbQmqJfEoextx923z1zndqV3rjqkrXrum9khQEUC7SQN7_SbJMSAwv-QeYsvAsHsDbX-C26ds6nKskA8aA8yGNjpBpG-9bV6h9W-50-62AqkGBGhSoQYEaFYSVu0Ou9kZXRatrU_rjXgpSZDhE34xc6Zw7jjkLjjj_AZgbi_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921221339</pqid></control><display><type>article</type><title>Status of the LHCb dipole magnet</title><source>IEEE Xplore (Online service)</source><creator>Andre, J. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Losasso, M.</creator><creatorcontrib>Andre, J. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Losasso, M.</creatorcontrib><description>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2004.829705</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum ; Apertures ; Applied sciences ; Assembly ; Channels ; Coils ; Costs ; Cyclic accelerators and storage rings ; Detectors ; Dipoles ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Experimental methods and instrumentation for elementary-particle and nuclear physics ; Homogeneity ; Large Hadron Collider ; Nuclear physics ; Physics ; Power dissipation ; Robustness ; Spectrometers ; Spectroscopy ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2004-06, Vol.14 (2), p.509-513</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</citedby><cites>FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1324843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16197859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andre, J.</creatorcontrib><creatorcontrib>Flegel, W.</creatorcontrib><creatorcontrib>Giudici, P.A.</creatorcontrib><creatorcontrib>Jamet, O.</creatorcontrib><creatorcontrib>Losasso, M.</creatorcontrib><title>Status of the LHCb dipole magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported.</description><subject>Aluminum</subject><subject>Apertures</subject><subject>Applied sciences</subject><subject>Assembly</subject><subject>Channels</subject><subject>Coils</subject><subject>Costs</subject><subject>Cyclic accelerators and storage rings</subject><subject>Detectors</subject><subject>Dipoles</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Experimental methods and instrumentation for elementary-particle and nuclear physics</subject><subject>Homogeneity</subject><subject>Large Hadron Collider</subject><subject>Nuclear physics</subject><subject>Physics</subject><subject>Power dissipation</subject><subject>Robustness</subject><subject>Spectrometers</subject><subject>Spectroscopy</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkcFLwzAUh4MoOKd3wUsR1FNnXtLXNMdR1AkDD5vnkCWpdnTtbNqD_70pHQw8iKf34H3vB-99hFwDnQFQ-bier_IZozSZZUwKiidkAohZzBDwNPQUIc4Y4-fkwvstpZBkCU5ItOp01_uoKaLu00XLRb6JbLlvKhft9EftuktyVujKu6tDnZL356d1voiXby-v-XwZmyQRXWwtGocahU4hoyCZMIXmVps00YJqa9AVFmi6MZYXmBguUDLOjRWbQmqJfEoextx923z1zndqV3rjqkrXrum9khQEUC7SQN7_SbJMSAwv-QeYsvAsHsDbX-C26ds6nKskA8aA8yGNjpBpG-9bV6h9W-50-62AqkGBGhSoQYEaFYSVu0Ou9kZXRatrU_rjXgpSZDhE34xc6Zw7jjkLjjj_AZgbi_g</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Andre, J.</creator><creator>Flegel, W.</creator><creator>Giudici, P.A.</creator><creator>Jamet, O.</creator><creator>Losasso, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040601</creationdate><title>Status of the LHCb dipole magnet</title><author>Andre, J. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Losasso, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aluminum</topic><topic>Apertures</topic><topic>Applied sciences</topic><topic>Assembly</topic><topic>Channels</topic><topic>Coils</topic><topic>Costs</topic><topic>Cyclic accelerators and storage rings</topic><topic>Detectors</topic><topic>Dipoles</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Experimental methods and instrumentation for elementary-particle and nuclear physics</topic><topic>Homogeneity</topic><topic>Large Hadron Collider</topic><topic>Nuclear physics</topic><topic>Physics</topic><topic>Power dissipation</topic><topic>Robustness</topic><topic>Spectrometers</topic><topic>Spectroscopy</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andre, J.</creatorcontrib><creatorcontrib>Flegel, W.</creatorcontrib><creatorcontrib>Giudici, P.A.</creatorcontrib><creatorcontrib>Jamet, O.</creatorcontrib><creatorcontrib>Losasso, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andre, J.</au><au>Flegel, W.</au><au>Giudici, P.A.</au><au>Jamet, O.</au><au>Losasso, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status of the LHCb dipole magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>14</volume><issue>2</issue><spage>509</spage><epage>513</epage><pages>509-513</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2004.829705</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2004-06, Vol.14 (2), p.509-513 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_901710376 |
source | IEEE Xplore (Online service) |
subjects | Aluminum Apertures Applied sciences Assembly Channels Coils Costs Cyclic accelerators and storage rings Detectors Dipoles Electrical engineering. Electrical power engineering Electromagnets Exact sciences and technology Experimental methods and instrumentation for elementary-particle and nuclear physics Homogeneity Large Hadron Collider Nuclear physics Physics Power dissipation Robustness Spectrometers Spectroscopy Various equipment and components |
title | Status of the LHCb dipole magnet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20of%20the%20LHCb%20dipole%20magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Andre,%20J.&rft.date=2004-06-01&rft.volume=14&rft.issue=2&rft.spage=509&rft.epage=513&rft.pages=509-513&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2004.829705&rft_dat=%3Cproquest_ieee_%3E28795109%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921221339&rft_id=info:pmid/&rft_ieee_id=1324843&rfr_iscdi=true |