Loading…

Status of the LHCb dipole magnet

The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2004-06, Vol.14 (2), p.509-513
Main Authors: Andre, J., Flegel, W., Giudici, P.A., Jamet, O., Losasso, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953
cites cdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953
container_end_page 513
container_issue 2
container_start_page 509
container_title IEEE transactions on applied superconductivity
container_volume 14
creator Andre, J.
Flegel, W.
Giudici, P.A.
Jamet, O.
Losasso, M.
description The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported.
doi_str_mv 10.1109/TASC.2004.829705
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_901710376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1324843</ieee_id><sourcerecordid>28795109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</originalsourceid><addsrcrecordid>eNqNkcFLwzAUh4MoOKd3wUsR1FNnXtLXNMdR1AkDD5vnkCWpdnTtbNqD_70pHQw8iKf34H3vB-99hFwDnQFQ-bier_IZozSZZUwKiidkAohZzBDwNPQUIc4Y4-fkwvstpZBkCU5ItOp01_uoKaLu00XLRb6JbLlvKhft9EftuktyVujKu6tDnZL356d1voiXby-v-XwZmyQRXWwtGocahU4hoyCZMIXmVps00YJqa9AVFmi6MZYXmBguUDLOjRWbQmqJfEoextx923z1zndqV3rjqkrXrum9khQEUC7SQN7_SbJMSAwv-QeYsvAsHsDbX-C26ds6nKskA8aA8yGNjpBpG-9bV6h9W-50-62AqkGBGhSoQYEaFYSVu0Ou9kZXRatrU_rjXgpSZDhE34xc6Zw7jjkLjjj_AZgbi_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921221339</pqid></control><display><type>article</type><title>Status of the LHCb dipole magnet</title><source>IEEE Xplore (Online service)</source><creator>Andre, J. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Losasso, M.</creator><creatorcontrib>Andre, J. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Losasso, M.</creatorcontrib><description>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2004.829705</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum ; Apertures ; Applied sciences ; Assembly ; Channels ; Coils ; Costs ; Cyclic accelerators and storage rings ; Detectors ; Dipoles ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Experimental methods and instrumentation for elementary-particle and nuclear physics ; Homogeneity ; Large Hadron Collider ; Nuclear physics ; Physics ; Power dissipation ; Robustness ; Spectrometers ; Spectroscopy ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2004-06, Vol.14 (2), p.509-513</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</citedby><cites>FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1324843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16197859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andre, J.</creatorcontrib><creatorcontrib>Flegel, W.</creatorcontrib><creatorcontrib>Giudici, P.A.</creatorcontrib><creatorcontrib>Jamet, O.</creatorcontrib><creatorcontrib>Losasso, M.</creatorcontrib><title>Status of the LHCb dipole magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported.</description><subject>Aluminum</subject><subject>Apertures</subject><subject>Applied sciences</subject><subject>Assembly</subject><subject>Channels</subject><subject>Coils</subject><subject>Costs</subject><subject>Cyclic accelerators and storage rings</subject><subject>Detectors</subject><subject>Dipoles</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Experimental methods and instrumentation for elementary-particle and nuclear physics</subject><subject>Homogeneity</subject><subject>Large Hadron Collider</subject><subject>Nuclear physics</subject><subject>Physics</subject><subject>Power dissipation</subject><subject>Robustness</subject><subject>Spectrometers</subject><subject>Spectroscopy</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkcFLwzAUh4MoOKd3wUsR1FNnXtLXNMdR1AkDD5vnkCWpdnTtbNqD_70pHQw8iKf34H3vB-99hFwDnQFQ-bier_IZozSZZUwKiidkAohZzBDwNPQUIc4Y4-fkwvstpZBkCU5ItOp01_uoKaLu00XLRb6JbLlvKhft9EftuktyVujKu6tDnZL356d1voiXby-v-XwZmyQRXWwtGocahU4hoyCZMIXmVps00YJqa9AVFmi6MZYXmBguUDLOjRWbQmqJfEoextx923z1zndqV3rjqkrXrum9khQEUC7SQN7_SbJMSAwv-QeYsvAsHsDbX-C26ds6nKskA8aA8yGNjpBpG-9bV6h9W-50-62AqkGBGhSoQYEaFYSVu0Ou9kZXRatrU_rjXgpSZDhE34xc6Zw7jjkLjjj_AZgbi_g</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Andre, J.</creator><creator>Flegel, W.</creator><creator>Giudici, P.A.</creator><creator>Jamet, O.</creator><creator>Losasso, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040601</creationdate><title>Status of the LHCb dipole magnet</title><author>Andre, J. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Losasso, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aluminum</topic><topic>Apertures</topic><topic>Applied sciences</topic><topic>Assembly</topic><topic>Channels</topic><topic>Coils</topic><topic>Costs</topic><topic>Cyclic accelerators and storage rings</topic><topic>Detectors</topic><topic>Dipoles</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Experimental methods and instrumentation for elementary-particle and nuclear physics</topic><topic>Homogeneity</topic><topic>Large Hadron Collider</topic><topic>Nuclear physics</topic><topic>Physics</topic><topic>Power dissipation</topic><topic>Robustness</topic><topic>Spectrometers</topic><topic>Spectroscopy</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andre, J.</creatorcontrib><creatorcontrib>Flegel, W.</creatorcontrib><creatorcontrib>Giudici, P.A.</creatorcontrib><creatorcontrib>Jamet, O.</creatorcontrib><creatorcontrib>Losasso, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andre, J.</au><au>Flegel, W.</au><au>Giudici, P.A.</au><au>Jamet, O.</au><au>Losasso, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status of the LHCb dipole magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>14</volume><issue>2</issue><spage>509</spage><epage>513</epage><pages>509-513</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/s/sup -1/ that should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single arm spectrometer with a large dipole magnet of 4 Tm of total integrated field, having the capability to stand frequent polarity changes and providing good lateral field homogeneity. For reasons of cost, simplicity and robustness, a magnet with resistive coils has been chosen. The magnet has a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically demanding a sloping gap of 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The total weight of the magnet is about 1600 t. The power dissipation in the aluminum coils will be 4.2 MW. Low carbon steel plates of 100 mm thickness are used to assemble the yoke. The coils are wound from hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture and the pole pieces have large shims. The magnet design will be reviewed; the magnet assembly in the underground area of the experiment and test results will be reported.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2004.829705</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2004-06, Vol.14 (2), p.509-513
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_901710376
source IEEE Xplore (Online service)
subjects Aluminum
Apertures
Applied sciences
Assembly
Channels
Coils
Costs
Cyclic accelerators and storage rings
Detectors
Dipoles
Electrical engineering. Electrical power engineering
Electromagnets
Exact sciences and technology
Experimental methods and instrumentation for elementary-particle and nuclear physics
Homogeneity
Large Hadron Collider
Nuclear physics
Physics
Power dissipation
Robustness
Spectrometers
Spectroscopy
Various equipment and components
title Status of the LHCb dipole magnet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20of%20the%20LHCb%20dipole%20magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Andre,%20J.&rft.date=2004-06-01&rft.volume=14&rft.issue=2&rft.spage=509&rft.epage=513&rft.pages=509-513&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2004.829705&rft_dat=%3Cproquest_ieee_%3E28795109%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-dd5ce5a57a61801927cfa3dac64a70adc5efd106bcd3f54c3759233cd7bf9a953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921221339&rft_id=info:pmid/&rft_ieee_id=1324843&rfr_iscdi=true