Loading…
Distributed EM algorithms for density estimation and clustering in sensor networks
The paper considers the problem of density estimation and clustering in distributed sensor networks. It is assumed that each node in the network senses an environment that can be described as a mixture of some elementary conditions. The measurements are thus statistically modeled with a mixture of G...
Saved in:
Published in: | IEEE transactions on signal processing 2003-08, Vol.51 (8), p.2245-2253 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper considers the problem of density estimation and clustering in distributed sensor networks. It is assumed that each node in the network senses an environment that can be described as a mixture of some elementary conditions. The measurements are thus statistically modeled with a mixture of Gaussians, where each Gaussian component corresponds to one of the elementary conditions. The paper presents a distributed expectation-maximization (EM) algorithm for estimating the Gaussian components, which are common to the environment and sensor network as a whole, as well as the mixing probabilities that may vary from node to node. The algorithm produces an estimate (in terms of a Gaussian mixture approximation) of the density of the sensor data without requiring the data to be transmitted to and processed at a central location. Alternatively, the algorithm can be viewed as a distributed processing strategy for clustering the sensor data into components corresponding to predominant environmental features sensed by the network. The convergence of the distributed EM algorithm is investigated, and simulations demonstrate the potential of this approach to sensor network data analysis. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2003.814623 |