Loading…
Exploiting punctuation semantics in continuous data streams
As most current query processing architectures are already pipelined, it seems logical to apply them to data streams. However, two classes of query operators are impractical for processing long or infinite data streams. Unbounded stateful operators maintain state with no upper bound in size and, so,...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2003-05, Vol.15 (3), p.555-568 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As most current query processing architectures are already pipelined, it seems logical to apply them to data streams. However, two classes of query operators are impractical for processing long or infinite data streams. Unbounded stateful operators maintain state with no upper bound in size and, so, run out of memory. Blocking operators read an entire input before emitting a single output and, so, might never produce a result. We believe that a priori knowledge of a data stream can permit the use of such operators in some cases. We discuss a kind of stream semantics called punctuated streams. Punctuations in a stream mark the end of substreams allowing us to view an infinite stream as a mixture of finite streams. We introduce three kinds of invariants to specify the proper behavior of operators in the presence of punctuation. Pass invariants define when results can be passed on. Keep invariants define what must be kept in local state to continue successful operation. Propagation invariants define when punctuation can be passed on. We report on our initial implementation and show a strategy for proving implementations of these invariants are faithful to their relational counterparts. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2003.1198390 |