Loading…

Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae

Verticillium wilt of cotton is a vascular disease mainly caused by the soil‐born filamentous fungus Verticillium dahliae. To study the mechanisms associated with defense responses in wilt‐resistant sea‐island cotton (Gossypium barbadense) upon V. dahliae infection, a comparative proteomic analysis b...

Full description

Saved in:
Bibliographic Details
Published in:Proteomics (Weinheim) 2011-11, Vol.11 (22), p.4296-4309
Main Authors: Wang, Fu-Xin, Ma, Yin-Ping, Yang, Chun-Lin, Zhao, Pi-Ming, Yao, Yuan, Jian, Gui-Liang, Luo, Yuan-Ming, Xia, Gui-Xian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Verticillium wilt of cotton is a vascular disease mainly caused by the soil‐born filamentous fungus Verticillium dahliae. To study the mechanisms associated with defense responses in wilt‐resistant sea‐island cotton (Gossypium barbadense) upon V. dahliae infection, a comparative proteomic analysis between infected and mock‐inoculated roots of G. barbadense var. Hai 7124 (a cultivar showing resistance against V. dahliae) was performed by 2‐DE combined with local EST database‐assisted PMF and MS/MS analysis. A total of 51 upregulated and 17 downregulated proteins were identified, and these proteins are mainly involved in defense and stress responses, primary and secondary metabolisms, lipid transport, and cytoskeleton organization. Three novel clues regarding wilt resistance of G. barbadense are gained from this study. First, ethylene signaling was significantly activated in the cotton roots attacked by V. dahliae as shown by the elevated expression of ethylene biosynthesis and signaling components. Second, the Bet v 1 family proteins may play an important role in the defense reaction against Verticillium wilt. Third, wilt resistance may implicate the redirection of carbohydrate flux from glycolysis to pentose phosphate pathway (PPP). To our knowledge, this study is the first root proteomic analysis on cotton wilt resistance and provides important insights for establishing strategies to control this disease.
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.201100062