Loading…
Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses
Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS)...
Saved in:
Published in: | Bioenergy research 2011-06, Vol.4 (2), p.96-110 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93 |
---|---|
cites | cdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93 |
container_end_page | 110 |
container_issue | 2 |
container_start_page | 96 |
container_title | Bioenergy research |
container_volume | 4 |
creator | Vogel, Kenneth P Dien, Bruce S Jung, Hans G Casler, Michael D Masterson, Steven D Mitchell, Robert B |
description | Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices. |
doi_str_mv | 10.1007/s12155-010-9104-4 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902343749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712237459</galeid><sourcerecordid>A712237459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEEqXwA1gRwQI2Kb5-xOPlqCqlUgWC6SxYIMvjXGdcZexiJ0Lz7-soCARClRd-fedc-56qegnkDAiR7zNQEKIhQBoFhDf8UXUCiqkGKKePf68Zf1o9y_mWkJZwok6q718mE0bvjj709dqOkxlqE7r6Zo8x4eht2V-MexPiUH_zOHS5djHVm59-tPs-mZzrzZiMD7ne5tnj09XXTb0OZjhmzM-rJ84MGV_8mk-r7YeLm_OPzfXny6vz9XVjBfCxwY7tGDEAUiEwx9AgEskZCGrZbmVatVuBZasdKbeWcZCyJd1KdC0ydE6x0-rt4nuX4o8J86gPPlscBhMwTlkrUn7OJJ_Jdw-SxVqCkC2VBX39D3obp1R-lvVq7h5QJQr0ZoF6M6D2wcXSDTt76rUESktRMVc9-w9VRocHb2NA58v5XwJYBDbFnBM6fZf8waSjBqLnwPUSuC6B6zlwzYuGLppc2NBj-vPeh0SvFpEzUZs--ay3G1r6TEAJIRWwe8SstAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860401295</pqid></control><display><type>article</type><title>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Vogel, Kenneth P ; Dien, Bruce S ; Jung, Hans G ; Casler, Michael D ; Masterson, Steven D ; Mitchell, Robert B</creator><creatorcontrib>Vogel, Kenneth P ; Dien, Bruce S ; Jung, Hans G ; Casler, Michael D ; Masterson, Steven D ; Mitchell, Robert B</creatorcontrib><description>Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-010-9104-4</identifier><language>eng</language><publisher>New York: New York : Springer-Verlag</publisher><subject>Acetaldehyde ; Agricultural production ; Agriculture ; Alcohol ; Alcohol, Denatured ; Analysis ; Biomass ; Biomass energy ; Biomedical and Life Sciences ; Biorefineries ; calibration ; cell wall components ; chemical composition ; Conversion ; Cultivars ; Estimates ; Ethanol ; Ethyl alcohol ; Fermentation ; Grasses ; hexoses ; Life Sciences ; Magnesium ; Monosaccharides ; near-infrared reflectance spectroscopy ; Panicum virgatum ; pentoses ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Quality ; Spectrum analysis ; strains ; Studies ; Sugar ; Sugars ; Technology application ; traits ; Walls ; Wood Science & Technology ; yields</subject><ispartof>Bioenergy research, 2011-06, Vol.4 (2), p.96-110</ispartof><rights>US Government 2010</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Springer Science+Business Media, LLC. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</citedby><cites>FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/860401295/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/860401295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Vogel, Kenneth P</creatorcontrib><creatorcontrib>Dien, Bruce S</creatorcontrib><creatorcontrib>Jung, Hans G</creatorcontrib><creatorcontrib>Casler, Michael D</creatorcontrib><creatorcontrib>Masterson, Steven D</creatorcontrib><creatorcontrib>Mitchell, Robert B</creatorcontrib><title>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.</description><subject>Acetaldehyde</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Alcohol</subject><subject>Alcohol, Denatured</subject><subject>Analysis</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Biomedical and Life Sciences</subject><subject>Biorefineries</subject><subject>calibration</subject><subject>cell wall components</subject><subject>chemical composition</subject><subject>Conversion</subject><subject>Cultivars</subject><subject>Estimates</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>Fermentation</subject><subject>Grasses</subject><subject>hexoses</subject><subject>Life Sciences</subject><subject>Magnesium</subject><subject>Monosaccharides</subject><subject>near-infrared reflectance spectroscopy</subject><subject>Panicum virgatum</subject><subject>pentoses</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Quality</subject><subject>Spectrum analysis</subject><subject>strains</subject><subject>Studies</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Technology application</subject><subject>traits</subject><subject>Walls</subject><subject>Wood Science & Technology</subject><subject>yields</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kUtv1DAUhSMEEqXwA1gRwQI2Kb5-xOPlqCqlUgWC6SxYIMvjXGdcZexiJ0Lz7-soCARClRd-fedc-56qegnkDAiR7zNQEKIhQBoFhDf8UXUCiqkGKKePf68Zf1o9y_mWkJZwok6q718mE0bvjj709dqOkxlqE7r6Zo8x4eht2V-MexPiUH_zOHS5djHVm59-tPs-mZzrzZiMD7ne5tnj09XXTb0OZjhmzM-rJ84MGV_8mk-r7YeLm_OPzfXny6vz9XVjBfCxwY7tGDEAUiEwx9AgEskZCGrZbmVatVuBZasdKbeWcZCyJd1KdC0ydE6x0-rt4nuX4o8J86gPPlscBhMwTlkrUn7OJJ_Jdw-SxVqCkC2VBX39D3obp1R-lvVq7h5QJQr0ZoF6M6D2wcXSDTt76rUESktRMVc9-w9VRocHb2NA58v5XwJYBDbFnBM6fZf8waSjBqLnwPUSuC6B6zlwzYuGLppc2NBj-vPeh0SvFpEzUZs--ay3G1r6TEAJIRWwe8SstAE</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Vogel, Kenneth P</creator><creator>Dien, Bruce S</creator><creator>Jung, Hans G</creator><creator>Casler, Michael D</creator><creator>Masterson, Steven D</creator><creator>Mitchell, Robert B</creator><general>New York : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SU</scope><scope>7U6</scope></search><sort><creationdate>20110601</creationdate><title>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</title><author>Vogel, Kenneth P ; Dien, Bruce S ; Jung, Hans G ; Casler, Michael D ; Masterson, Steven D ; Mitchell, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetaldehyde</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Alcohol</topic><topic>Alcohol, Denatured</topic><topic>Analysis</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Biomedical and Life Sciences</topic><topic>Biorefineries</topic><topic>calibration</topic><topic>cell wall components</topic><topic>chemical composition</topic><topic>Conversion</topic><topic>Cultivars</topic><topic>Estimates</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>Fermentation</topic><topic>Grasses</topic><topic>hexoses</topic><topic>Life Sciences</topic><topic>Magnesium</topic><topic>Monosaccharides</topic><topic>near-infrared reflectance spectroscopy</topic><topic>Panicum virgatum</topic><topic>pentoses</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Quality</topic><topic>Spectrum analysis</topic><topic>strains</topic><topic>Studies</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Technology application</topic><topic>traits</topic><topic>Walls</topic><topic>Wood Science & Technology</topic><topic>yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, Kenneth P</creatorcontrib><creatorcontrib>Dien, Bruce S</creatorcontrib><creatorcontrib>Jung, Hans G</creatorcontrib><creatorcontrib>Casler, Michael D</creatorcontrib><creatorcontrib>Masterson, Steven D</creatorcontrib><creatorcontrib>Mitchell, Robert B</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, Kenneth P</au><au>Dien, Bruce S</au><au>Jung, Hans G</au><au>Casler, Michael D</au><au>Masterson, Steven D</au><au>Mitchell, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>4</volume><issue>2</issue><spage>96</spage><epage>110</epage><pages>96-110</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.</abstract><cop>New York</cop><pub>New York : Springer-Verlag</pub><doi>10.1007/s12155-010-9104-4</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1234 |
ispartof | Bioenergy research, 2011-06, Vol.4 (2), p.96-110 |
issn | 1939-1234 1939-1242 |
language | eng |
recordid | cdi_proquest_miscellaneous_902343749 |
source | ABI/INFORM Global; Springer Link |
subjects | Acetaldehyde Agricultural production Agriculture Alcohol Alcohol, Denatured Analysis Biomass Biomass energy Biomedical and Life Sciences Biorefineries calibration cell wall components chemical composition Conversion Cultivars Estimates Ethanol Ethyl alcohol Fermentation Grasses hexoses Life Sciences Magnesium Monosaccharides near-infrared reflectance spectroscopy Panicum virgatum pentoses Plant Breeding/Biotechnology Plant Ecology Plant Genetics and Genomics Plant Sciences Quality Spectrum analysis strains Studies Sugar Sugars Technology application traits Walls Wood Science & Technology yields |
title | Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Actual%20and%20Theoretical%20Ethanol%20Yields%20for%20Switchgrass%20Strains%20Using%20NIRS%20Analyses&rft.jtitle=Bioenergy%20research&rft.au=Vogel,%20Kenneth%20P&rft.date=2011-06-01&rft.volume=4&rft.issue=2&rft.spage=96&rft.epage=110&rft.pages=96-110&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-010-9104-4&rft_dat=%3Cgale_proqu%3EA712237459%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=860401295&rft_id=info:pmid/&rft_galeid=A712237459&rfr_iscdi=true |