Loading…

Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses

Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS)...

Full description

Saved in:
Bibliographic Details
Published in:Bioenergy research 2011-06, Vol.4 (2), p.96-110
Main Authors: Vogel, Kenneth P, Dien, Bruce S, Jung, Hans G, Casler, Michael D, Masterson, Steven D, Mitchell, Robert B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93
cites cdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93
container_end_page 110
container_issue 2
container_start_page 96
container_title Bioenergy research
container_volume 4
creator Vogel, Kenneth P
Dien, Bruce S
Jung, Hans G
Casler, Michael D
Masterson, Steven D
Mitchell, Robert B
description Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.
doi_str_mv 10.1007/s12155-010-9104-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902343749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712237459</galeid><sourcerecordid>A712237459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEEqXwA1gRwQI2Kb5-xOPlqCqlUgWC6SxYIMvjXGdcZexiJ0Lz7-soCARClRd-fedc-56qegnkDAiR7zNQEKIhQBoFhDf8UXUCiqkGKKePf68Zf1o9y_mWkJZwok6q718mE0bvjj709dqOkxlqE7r6Zo8x4eht2V-MexPiUH_zOHS5djHVm59-tPs-mZzrzZiMD7ne5tnj09XXTb0OZjhmzM-rJ84MGV_8mk-r7YeLm_OPzfXny6vz9XVjBfCxwY7tGDEAUiEwx9AgEskZCGrZbmVatVuBZasdKbeWcZCyJd1KdC0ydE6x0-rt4nuX4o8J86gPPlscBhMwTlkrUn7OJJ_Jdw-SxVqCkC2VBX39D3obp1R-lvVq7h5QJQr0ZoF6M6D2wcXSDTt76rUESktRMVc9-w9VRocHb2NA58v5XwJYBDbFnBM6fZf8waSjBqLnwPUSuC6B6zlwzYuGLppc2NBj-vPeh0SvFpEzUZs--ay3G1r6TEAJIRWwe8SstAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860401295</pqid></control><display><type>article</type><title>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Vogel, Kenneth P ; Dien, Bruce S ; Jung, Hans G ; Casler, Michael D ; Masterson, Steven D ; Mitchell, Robert B</creator><creatorcontrib>Vogel, Kenneth P ; Dien, Bruce S ; Jung, Hans G ; Casler, Michael D ; Masterson, Steven D ; Mitchell, Robert B</creatorcontrib><description>Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-010-9104-4</identifier><language>eng</language><publisher>New York: New York : Springer-Verlag</publisher><subject>Acetaldehyde ; Agricultural production ; Agriculture ; Alcohol ; Alcohol, Denatured ; Analysis ; Biomass ; Biomass energy ; Biomedical and Life Sciences ; Biorefineries ; calibration ; cell wall components ; chemical composition ; Conversion ; Cultivars ; Estimates ; Ethanol ; Ethyl alcohol ; Fermentation ; Grasses ; hexoses ; Life Sciences ; Magnesium ; Monosaccharides ; near-infrared reflectance spectroscopy ; Panicum virgatum ; pentoses ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Quality ; Spectrum analysis ; strains ; Studies ; Sugar ; Sugars ; Technology application ; traits ; Walls ; Wood Science &amp; Technology ; yields</subject><ispartof>Bioenergy research, 2011-06, Vol.4 (2), p.96-110</ispartof><rights>US Government 2010</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Springer Science+Business Media, LLC. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</citedby><cites>FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/860401295/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/860401295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Vogel, Kenneth P</creatorcontrib><creatorcontrib>Dien, Bruce S</creatorcontrib><creatorcontrib>Jung, Hans G</creatorcontrib><creatorcontrib>Casler, Michael D</creatorcontrib><creatorcontrib>Masterson, Steven D</creatorcontrib><creatorcontrib>Mitchell, Robert B</creatorcontrib><title>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.</description><subject>Acetaldehyde</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Alcohol</subject><subject>Alcohol, Denatured</subject><subject>Analysis</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Biomedical and Life Sciences</subject><subject>Biorefineries</subject><subject>calibration</subject><subject>cell wall components</subject><subject>chemical composition</subject><subject>Conversion</subject><subject>Cultivars</subject><subject>Estimates</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>Fermentation</subject><subject>Grasses</subject><subject>hexoses</subject><subject>Life Sciences</subject><subject>Magnesium</subject><subject>Monosaccharides</subject><subject>near-infrared reflectance spectroscopy</subject><subject>Panicum virgatum</subject><subject>pentoses</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Quality</subject><subject>Spectrum analysis</subject><subject>strains</subject><subject>Studies</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Technology application</subject><subject>traits</subject><subject>Walls</subject><subject>Wood Science &amp; Technology</subject><subject>yields</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kUtv1DAUhSMEEqXwA1gRwQI2Kb5-xOPlqCqlUgWC6SxYIMvjXGdcZexiJ0Lz7-soCARClRd-fedc-56qegnkDAiR7zNQEKIhQBoFhDf8UXUCiqkGKKePf68Zf1o9y_mWkJZwok6q718mE0bvjj709dqOkxlqE7r6Zo8x4eht2V-MexPiUH_zOHS5djHVm59-tPs-mZzrzZiMD7ne5tnj09XXTb0OZjhmzM-rJ84MGV_8mk-r7YeLm_OPzfXny6vz9XVjBfCxwY7tGDEAUiEwx9AgEskZCGrZbmVatVuBZasdKbeWcZCyJd1KdC0ydE6x0-rt4nuX4o8J86gPPlscBhMwTlkrUn7OJJ_Jdw-SxVqCkC2VBX39D3obp1R-lvVq7h5QJQr0ZoF6M6D2wcXSDTt76rUESktRMVc9-w9VRocHb2NA58v5XwJYBDbFnBM6fZf8waSjBqLnwPUSuC6B6zlwzYuGLppc2NBj-vPeh0SvFpEzUZs--ay3G1r6TEAJIRWwe8SstAE</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Vogel, Kenneth P</creator><creator>Dien, Bruce S</creator><creator>Jung, Hans G</creator><creator>Casler, Michael D</creator><creator>Masterson, Steven D</creator><creator>Mitchell, Robert B</creator><general>New York : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SU</scope><scope>7U6</scope></search><sort><creationdate>20110601</creationdate><title>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</title><author>Vogel, Kenneth P ; Dien, Bruce S ; Jung, Hans G ; Casler, Michael D ; Masterson, Steven D ; Mitchell, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetaldehyde</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Alcohol</topic><topic>Alcohol, Denatured</topic><topic>Analysis</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Biomedical and Life Sciences</topic><topic>Biorefineries</topic><topic>calibration</topic><topic>cell wall components</topic><topic>chemical composition</topic><topic>Conversion</topic><topic>Cultivars</topic><topic>Estimates</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>Fermentation</topic><topic>Grasses</topic><topic>hexoses</topic><topic>Life Sciences</topic><topic>Magnesium</topic><topic>Monosaccharides</topic><topic>near-infrared reflectance spectroscopy</topic><topic>Panicum virgatum</topic><topic>pentoses</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Quality</topic><topic>Spectrum analysis</topic><topic>strains</topic><topic>Studies</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Technology application</topic><topic>traits</topic><topic>Walls</topic><topic>Wood Science &amp; Technology</topic><topic>yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, Kenneth P</creatorcontrib><creatorcontrib>Dien, Bruce S</creatorcontrib><creatorcontrib>Jung, Hans G</creatorcontrib><creatorcontrib>Casler, Michael D</creatorcontrib><creatorcontrib>Masterson, Steven D</creatorcontrib><creatorcontrib>Mitchell, Robert B</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, Kenneth P</au><au>Dien, Bruce S</au><au>Jung, Hans G</au><au>Casler, Michael D</au><au>Masterson, Steven D</au><au>Mitchell, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>4</volume><issue>2</issue><spage>96</spage><epage>110</epage><pages>96-110</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg⁻¹) and theoretical ethanol yields, ETOHTL (L Mg⁻¹), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg⁻¹ while ETOHTL means ranged from 203 to 222 L Mg⁻¹. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534-3,720 L ha⁻¹) and theoretical (4,878-7,888 L ha⁻¹) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.</abstract><cop>New York</cop><pub>New York : Springer-Verlag</pub><doi>10.1007/s12155-010-9104-4</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1234
ispartof Bioenergy research, 2011-06, Vol.4 (2), p.96-110
issn 1939-1234
1939-1242
language eng
recordid cdi_proquest_miscellaneous_902343749
source ABI/INFORM Global; Springer Link
subjects Acetaldehyde
Agricultural production
Agriculture
Alcohol
Alcohol, Denatured
Analysis
Biomass
Biomass energy
Biomedical and Life Sciences
Biorefineries
calibration
cell wall components
chemical composition
Conversion
Cultivars
Estimates
Ethanol
Ethyl alcohol
Fermentation
Grasses
hexoses
Life Sciences
Magnesium
Monosaccharides
near-infrared reflectance spectroscopy
Panicum virgatum
pentoses
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant Sciences
Quality
Spectrum analysis
strains
Studies
Sugar
Sugars
Technology application
traits
Walls
Wood Science & Technology
yields
title Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Actual%20and%20Theoretical%20Ethanol%20Yields%20for%20Switchgrass%20Strains%20Using%20NIRS%20Analyses&rft.jtitle=Bioenergy%20research&rft.au=Vogel,%20Kenneth%20P&rft.date=2011-06-01&rft.volume=4&rft.issue=2&rft.spage=96&rft.epage=110&rft.pages=96-110&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-010-9104-4&rft_dat=%3Cgale_proqu%3EA712237459%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-ed3b30a1179e13f3eaee0743152c3b8a69b81c38b013fc3417760d85d6e3eff93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=860401295&rft_id=info:pmid/&rft_galeid=A712237459&rfr_iscdi=true