Loading…
High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers
The two forms of cytoplasmic male sterility (CMS) native to the oilseed rape or canola species Brassica napus, nap and pol, have novel features that may provide insight into the molecular mechanisms through which CMS/nuclear restorer systems evolve. One such feature is the finding that the distinct...
Saved in:
Published in: | Theoretical and applied genetics 2010-02, Vol.120 (4), p.843-851 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The two forms of cytoplasmic male sterility (CMS) native to the oilseed rape or canola species Brassica napus, nap and pol, have novel features that may provide insight into the molecular mechanisms through which CMS/nuclear restorer systems evolve. One such feature is the finding that the distinct nuclear restorer genes for the two systems represent different alleles or haplotypes of the same nuclear locus. Improved understanding of how these systems have evolved will require molecular cloning and characterization of this novel locus. We have employed an approach that exploits the regional co-linearity between the Arabidopsis and Brassica genomes to construct a high-resolution genetic map of the nuclear restorer for the pol system, Rfp. Specifically, Arabidopsis-derived sequences have been used as a set of ordered RFLP probes to localize Rfp to a region of the B. napus genome equivalent to a 115 kb interval on Arabidopsis chromosome 1. Based on the known relationship of physical distances between orthologous segments of Arabidopsis and Brassica chromosomes, it is anticipated that the B. napus restorer locus is now mapped to sufficient resolution to permit its isolation and characterization. |
---|---|
ISSN: | 0040-5752 1432-2242 |
DOI: | 10.1007/s00122-009-1215-y |