Loading…

Growth and micromagnetic simulation of magnetite nanoparticles

Magnetite nanoparticles with different sizes and different assemblies were synthesized via hydrothermal method. Micromag- netic simulation shows the magnetite nanocubes with different sizes have different energy states, which determines the assem- bly mode. Magnetite nanocubes with the side length o...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2011-07, Vol.54 (7), p.1208-1212
Main Authors: Zhao, SuFen, Sun, Qian, Wang, RongMing, Han, YuNan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-11d847effa819d14ca94cb28a610fe7ad53f74be403618576cf941bc77fae6983
cites cdi_FETCH-LOGICAL-c407t-11d847effa819d14ca94cb28a610fe7ad53f74be403618576cf941bc77fae6983
container_end_page 1212
container_issue 7
container_start_page 1208
container_title Science China. Physics, mechanics & astronomy
container_volume 54
creator Zhao, SuFen
Sun, Qian
Wang, RongMing
Han, YuNan
description Magnetite nanoparticles with different sizes and different assemblies were synthesized via hydrothermal method. Micromag- netic simulation shows the magnetite nanocubes with different sizes have different energy states, which determines the assem- bly mode. Magnetite nanocubes with the side length of 30--60 nm tended to be dispersed while both nanochains and dispersed nanoparticles were found to grow for the nanocubes with the side length less than 30 nm, which can be explained in the fact that the above two assembly modes have very close energies. The assembly mode of nanocubes with the size bigger than 60 nm is generally nanorings consisting of connected inter-grown nanocubes and the nanocubes are no longer single domain. The simulations are consistent with the experimental results.
doi_str_mv 10.1007/s11433-011-4301-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902359875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>38203522</cqvip_id><sourcerecordid>1671256727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-11d847effa819d14ca94cb28a610fe7ad53f74be403618576cf941bc77fae6983</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOOb-AG8VD3qp5iVpk1wEGf6CgRc9h6xNto422ZIW8b83o0PBw3JJeHy-7718ELoEfAcY8_sIwCjNMUDOKIa8OEETEKXMQRJ-mt4lZzmnTJyjWYwbnA6VmHE2QQ8vwX_160y7OuuaKvhOr5zpmyqLTTe0um-8y7zNDuXeZE47v9UhIa2JF-jM6jaa2eGeos_np4_5a754f3mbPy7yimHe5wC1YNxYqwXIGlilJauWROgSsDVc1wW1nC0Nw7QEUfCyspLBsuLcalNKQafoZuy7DX43mNirromVaVvtjB-ikpjQQgpeJPL2KJlcAClKTnhCr_-hGz8El_6hiExrJHlEJgpGKsmJMRirtqHpdPhWgNVevxr1q6Rf7fWr_RJkzMTEupUJf52Pha4Og9berXYp9zuJCoJpQQj9AZzokYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918592729</pqid></control><display><type>article</type><title>Growth and micromagnetic simulation of magnetite nanoparticles</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhao, SuFen ; Sun, Qian ; Wang, RongMing ; Han, YuNan</creator><creatorcontrib>Zhao, SuFen ; Sun, Qian ; Wang, RongMing ; Han, YuNan</creatorcontrib><description>Magnetite nanoparticles with different sizes and different assemblies were synthesized via hydrothermal method. Micromag- netic simulation shows the magnetite nanocubes with different sizes have different energy states, which determines the assem- bly mode. Magnetite nanocubes with the side length of 30--60 nm tended to be dispersed while both nanochains and dispersed nanoparticles were found to grow for the nanocubes with the side length less than 30 nm, which can be explained in the fact that the above two assembly modes have very close energies. The assembly mode of nanocubes with the size bigger than 60 nm is generally nanorings consisting of connected inter-grown nanocubes and the nanocubes are no longer single domain. The simulations are consistent with the experimental results.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-011-4301-5</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Assemblies ; Assembly ; Astronomy ; Classical and Continuum Physics ; Dispersion ; Magnetite ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructure ; Observations and Techniques ; Physics ; Physics and Astronomy ; Research Paper ; Simulation ; 仿真结果 ; 水热法合成 ; 生长 ; 磁模拟 ; 磁铁矿 ; 纳米环 ; 纳米粒子 ; 装配模式</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2011-07, Vol.54 (7), p.1208-1212</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-11d847effa819d14ca94cb28a610fe7ad53f74be403618576cf941bc77fae6983</citedby><cites>FETCH-LOGICAL-c407t-11d847effa819d14ca94cb28a610fe7ad53f74be403618576cf941bc77fae6983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, SuFen</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Wang, RongMing</creatorcontrib><creatorcontrib>Han, YuNan</creatorcontrib><title>Growth and micromagnetic simulation of magnetite nanoparticles</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>Magnetite nanoparticles with different sizes and different assemblies were synthesized via hydrothermal method. Micromag- netic simulation shows the magnetite nanocubes with different sizes have different energy states, which determines the assem- bly mode. Magnetite nanocubes with the side length of 30--60 nm tended to be dispersed while both nanochains and dispersed nanoparticles were found to grow for the nanocubes with the side length less than 30 nm, which can be explained in the fact that the above two assembly modes have very close energies. The assembly mode of nanocubes with the size bigger than 60 nm is generally nanorings consisting of connected inter-grown nanocubes and the nanocubes are no longer single domain. The simulations are consistent with the experimental results.</description><subject>Assemblies</subject><subject>Assembly</subject><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Dispersion</subject><subject>Magnetite</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Paper</subject><subject>Simulation</subject><subject>仿真结果</subject><subject>水热法合成</subject><subject>生长</subject><subject>磁模拟</subject><subject>磁铁矿</subject><subject>纳米环</subject><subject>纳米粒子</subject><subject>装配模式</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOOb-AG8VD3qp5iVpk1wEGf6CgRc9h6xNto422ZIW8b83o0PBw3JJeHy-7718ELoEfAcY8_sIwCjNMUDOKIa8OEETEKXMQRJ-mt4lZzmnTJyjWYwbnA6VmHE2QQ8vwX_160y7OuuaKvhOr5zpmyqLTTe0um-8y7zNDuXeZE47v9UhIa2JF-jM6jaa2eGeos_np4_5a754f3mbPy7yimHe5wC1YNxYqwXIGlilJauWROgSsDVc1wW1nC0Nw7QEUfCyspLBsuLcalNKQafoZuy7DX43mNirromVaVvtjB-ikpjQQgpeJPL2KJlcAClKTnhCr_-hGz8El_6hiExrJHlEJgpGKsmJMRirtqHpdPhWgNVevxr1q6Rf7fWr_RJkzMTEupUJf52Pha4Og9berXYp9zuJCoJpQQj9AZzokYs</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Zhao, SuFen</creator><creator>Sun, Qian</creator><creator>Wang, RongMing</creator><creator>Han, YuNan</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110701</creationdate><title>Growth and micromagnetic simulation of magnetite nanoparticles</title><author>Zhao, SuFen ; Sun, Qian ; Wang, RongMing ; Han, YuNan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-11d847effa819d14ca94cb28a610fe7ad53f74be403618576cf941bc77fae6983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Assemblies</topic><topic>Assembly</topic><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Dispersion</topic><topic>Magnetite</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Paper</topic><topic>Simulation</topic><topic>仿真结果</topic><topic>水热法合成</topic><topic>生长</topic><topic>磁模拟</topic><topic>磁铁矿</topic><topic>纳米环</topic><topic>纳米粒子</topic><topic>装配模式</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, SuFen</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Wang, RongMing</creatorcontrib><creatorcontrib>Han, YuNan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, SuFen</au><au>Sun, Qian</au><au>Wang, RongMing</au><au>Han, YuNan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and micromagnetic simulation of magnetite nanoparticles</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>54</volume><issue>7</issue><spage>1208</spage><epage>1212</epage><pages>1208-1212</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Magnetite nanoparticles with different sizes and different assemblies were synthesized via hydrothermal method. Micromag- netic simulation shows the magnetite nanocubes with different sizes have different energy states, which determines the assem- bly mode. Magnetite nanocubes with the side length of 30--60 nm tended to be dispersed while both nanochains and dispersed nanoparticles were found to grow for the nanocubes with the side length less than 30 nm, which can be explained in the fact that the above two assembly modes have very close energies. The assembly mode of nanocubes with the size bigger than 60 nm is generally nanorings consisting of connected inter-grown nanocubes and the nanocubes are no longer single domain. The simulations are consistent with the experimental results.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-011-4301-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2011-07, Vol.54 (7), p.1208-1212
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_miscellaneous_902359875
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Assemblies
Assembly
Astronomy
Classical and Continuum Physics
Dispersion
Magnetite
Nanocomposites
Nanomaterials
Nanoparticles
Nanostructure
Observations and Techniques
Physics
Physics and Astronomy
Research Paper
Simulation
仿真结果
水热法合成
生长
磁模拟
磁铁矿
纳米环
纳米粒子
装配模式
title Growth and micromagnetic simulation of magnetite nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20micromagnetic%20simulation%20of%20magnetite%20nanoparticles&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Zhao,%20SuFen&rft.date=2011-07-01&rft.volume=54&rft.issue=7&rft.spage=1208&rft.epage=1212&rft.pages=1208-1212&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-011-4301-5&rft_dat=%3Cproquest_cross%3E1671256727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-11d847effa819d14ca94cb28a610fe7ad53f74be403618576cf941bc77fae6983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918592729&rft_id=info:pmid/&rft_cqvip_id=38203522&rfr_iscdi=true