Loading…

Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat

A dominant allele of the vernalization gene Vrn-2 is the wild type conferring winter growth habit, whereas a recessive vrn-2 allele confers spring growth habit. The recessive vrn-2 allele is mutated due to the deletion of the complete gene (a null form) or alternation of a key amino acid in the VRN-...

Full description

Saved in:
Bibliographic Details
Published in:Molecular breeding 2011-04, Vol.27 (4), p.501-510
Main Authors: Zhu, Xinkai, Tan, ChorTee, Cao, Shuanghe, Yan, Liuling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-3db3fb3411c0208cc7830f63e998d419de88cab28d3cd3b417f05902a282c5e73
cites cdi_FETCH-LOGICAL-c372t-3db3fb3411c0208cc7830f63e998d419de88cab28d3cd3b417f05902a282c5e73
container_end_page 510
container_issue 4
container_start_page 501
container_title Molecular breeding
container_volume 27
creator Zhu, Xinkai
Tan, ChorTee
Cao, Shuanghe
Yan, Liuling
description A dominant allele of the vernalization gene Vrn-2 is the wild type conferring winter growth habit, whereas a recessive vrn-2 allele confers spring growth habit. The recessive vrn-2 allele is mutated due to the deletion of the complete gene (a null form) or alternation of a key amino acid in the VRN-2 protein (a nonfunctional form) in diploid wheat or tetraploid wheat. VRN-2 is also denoted ZCCT due to the presence of a zinc finger and a CCT domain in its protein. There are two paralogous ZCCT genes at the VRN-2 locus in diploid Triticum monococcum and three paralogous ZCCT genes on each of the A and B genomes in tetraploid wheat, but little is known about the allelic variation in VRN-2 in hexaploid wheat. In the study reported here, we performed a one-shot PCR to simultaneously amplify the promoter regions of the three ZCCT-1 genes from hexaploid wheat, including the 302-bp fragment from ZCCT-A1, the 294-bp fragment from ZCCT-B1, and the 320-bp fragment from ZCCT-D1. Each amplicon could be differentiated by electrophoresis in an acrylamide/bisacrylamide gel. This PCR marker for different lengths of the three ZCCT-1 genes was used to search for null alleles in hexaploid wheat. A null allele was found in each of ZCCT-A1, ZCCT-B1, and ZCCT-D1 among 74 cultivars and genetic stocks of U.S. hexaploid wheat. Among 54 Chinese wheat cultivars, breeding lines, and landraces, we identified three accessions carrying a single null allele at ZCCT-A1, three accessions carrying a null allele at ZCCT-B1, and one accession carrying a double null allele at both ZCCT-A1 and ZCCT-D1. The potential application of these natural ZCCT-1 mutant materials in wheat breeding programs and studies on the genetics of wheat is discussed.
doi_str_mv 10.1007/s11032-010-9447-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902361199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259498790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-3db3fb3411c0208cc7830f63e998d419de88cab28d3cd3b417f05902a282c5e73</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhiMEEqXwAJywxIFLDWNPEtvHskCLVMSB9sLF8jrj3VTeeLETFd4er4KExIHTzGi-bzT6m-algLcCQL0rQgBKDgK4aVvF9aPmTHRKcqO0flx71MBRtfi0eVbKPVTH9P1Zs_uSIvklusyGMQTKNM2jm8c0sRTYtMTIXIwUqTA3s--bzS0XbEdTnSsy74ldXrD3F8xNA_twWqTDaRXYnn66Y0zjwB725ObnzZPgYqEXf-p5c_fp4-3mmt98vfq8ubzhHpWcOQ5bDFtshfAgQXuvNELokYzRQyvMQFp7t5V6QD_gthUqQGdAOqml70jhefNmvXvM6cdCZbaHsXiK0U2UlmIri70QxlTy9T_kfVryVJ-zUnamNVoZqJRYKZ9TKZmCPebx4PIvK8Cekrdr8rYmb0_JW10duTqlstOO8t_L_5NerVJwybpdHou9-yZBIAjTdah7_A3N3Yzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259498790</pqid></control><display><type>article</type><title>Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat</title><source>Springer Nature</source><creator>Zhu, Xinkai ; Tan, ChorTee ; Cao, Shuanghe ; Yan, Liuling</creator><creatorcontrib>Zhu, Xinkai ; Tan, ChorTee ; Cao, Shuanghe ; Yan, Liuling</creatorcontrib><description>A dominant allele of the vernalization gene Vrn-2 is the wild type conferring winter growth habit, whereas a recessive vrn-2 allele confers spring growth habit. The recessive vrn-2 allele is mutated due to the deletion of the complete gene (a null form) or alternation of a key amino acid in the VRN-2 protein (a nonfunctional form) in diploid wheat or tetraploid wheat. VRN-2 is also denoted ZCCT due to the presence of a zinc finger and a CCT domain in its protein. There are two paralogous ZCCT genes at the VRN-2 locus in diploid Triticum monococcum and three paralogous ZCCT genes on each of the A and B genomes in tetraploid wheat, but little is known about the allelic variation in VRN-2 in hexaploid wheat. In the study reported here, we performed a one-shot PCR to simultaneously amplify the promoter regions of the three ZCCT-1 genes from hexaploid wheat, including the 302-bp fragment from ZCCT-A1, the 294-bp fragment from ZCCT-B1, and the 320-bp fragment from ZCCT-D1. Each amplicon could be differentiated by electrophoresis in an acrylamide/bisacrylamide gel. This PCR marker for different lengths of the three ZCCT-1 genes was used to search for null alleles in hexaploid wheat. A null allele was found in each of ZCCT-A1, ZCCT-B1, and ZCCT-D1 among 74 cultivars and genetic stocks of U.S. hexaploid wheat. Among 54 Chinese wheat cultivars, breeding lines, and landraces, we identified three accessions carrying a single null allele at ZCCT-A1, three accessions carrying a null allele at ZCCT-B1, and one accession carrying a double null allele at both ZCCT-A1 and ZCCT-D1. The potential application of these natural ZCCT-1 mutant materials in wheat breeding programs and studies on the genetics of wheat is discussed.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-010-9447-8</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Acrylamide ; Alleles ; Amino acids ; Biomedical and Life Sciences ; Biotechnology ; Cultivars ; Electrophoresis ; Gene deletion ; Genes ; Genetics ; Genomes ; Genomics ; growth habit ; Life Sciences ; Molecular biology ; Natural mutants ; Plant biology ; Plant breeding ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Polyploidy genomes ; Proteins ; Triticum aestivum ; Triticum monococcum ; Vernalization ; VRN-2 genes ; Wheat ; Wheat genome evolution ; Zinc finger proteins</subject><ispartof>Molecular breeding, 2011-04, Vol.27 (4), p.501-510</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Molecular Breeding is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-3db3fb3411c0208cc7830f63e998d419de88cab28d3cd3b417f05902a282c5e73</citedby><cites>FETCH-LOGICAL-c372t-3db3fb3411c0208cc7830f63e998d419de88cab28d3cd3b417f05902a282c5e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Xinkai</creatorcontrib><creatorcontrib>Tan, ChorTee</creatorcontrib><creatorcontrib>Cao, Shuanghe</creatorcontrib><creatorcontrib>Yan, Liuling</creatorcontrib><title>Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><description>A dominant allele of the vernalization gene Vrn-2 is the wild type conferring winter growth habit, whereas a recessive vrn-2 allele confers spring growth habit. The recessive vrn-2 allele is mutated due to the deletion of the complete gene (a null form) or alternation of a key amino acid in the VRN-2 protein (a nonfunctional form) in diploid wheat or tetraploid wheat. VRN-2 is also denoted ZCCT due to the presence of a zinc finger and a CCT domain in its protein. There are two paralogous ZCCT genes at the VRN-2 locus in diploid Triticum monococcum and three paralogous ZCCT genes on each of the A and B genomes in tetraploid wheat, but little is known about the allelic variation in VRN-2 in hexaploid wheat. In the study reported here, we performed a one-shot PCR to simultaneously amplify the promoter regions of the three ZCCT-1 genes from hexaploid wheat, including the 302-bp fragment from ZCCT-A1, the 294-bp fragment from ZCCT-B1, and the 320-bp fragment from ZCCT-D1. Each amplicon could be differentiated by electrophoresis in an acrylamide/bisacrylamide gel. This PCR marker for different lengths of the three ZCCT-1 genes was used to search for null alleles in hexaploid wheat. A null allele was found in each of ZCCT-A1, ZCCT-B1, and ZCCT-D1 among 74 cultivars and genetic stocks of U.S. hexaploid wheat. Among 54 Chinese wheat cultivars, breeding lines, and landraces, we identified three accessions carrying a single null allele at ZCCT-A1, three accessions carrying a null allele at ZCCT-B1, and one accession carrying a double null allele at both ZCCT-A1 and ZCCT-D1. The potential application of these natural ZCCT-1 mutant materials in wheat breeding programs and studies on the genetics of wheat is discussed.</description><subject>Acrylamide</subject><subject>Alleles</subject><subject>Amino acids</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cultivars</subject><subject>Electrophoresis</subject><subject>Gene deletion</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>growth habit</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Natural mutants</subject><subject>Plant biology</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Polyploidy genomes</subject><subject>Proteins</subject><subject>Triticum aestivum</subject><subject>Triticum monococcum</subject><subject>Vernalization</subject><subject>VRN-2 genes</subject><subject>Wheat</subject><subject>Wheat genome evolution</subject><subject>Zinc finger proteins</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhiMEEqXwAJywxIFLDWNPEtvHskCLVMSB9sLF8jrj3VTeeLETFd4er4KExIHTzGi-bzT6m-algLcCQL0rQgBKDgK4aVvF9aPmTHRKcqO0flx71MBRtfi0eVbKPVTH9P1Zs_uSIvklusyGMQTKNM2jm8c0sRTYtMTIXIwUqTA3s--bzS0XbEdTnSsy74ldXrD3F8xNA_twWqTDaRXYnn66Y0zjwB725ObnzZPgYqEXf-p5c_fp4-3mmt98vfq8ubzhHpWcOQ5bDFtshfAgQXuvNELokYzRQyvMQFp7t5V6QD_gthUqQGdAOqml70jhefNmvXvM6cdCZbaHsXiK0U2UlmIri70QxlTy9T_kfVryVJ-zUnamNVoZqJRYKZ9TKZmCPebx4PIvK8Cekrdr8rYmb0_JW10duTqlstOO8t_L_5NerVJwybpdHou9-yZBIAjTdah7_A3N3Yzg</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Zhu, Xinkai</creator><creator>Tan, ChorTee</creator><creator>Cao, Shuanghe</creator><creator>Yan, Liuling</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20110401</creationdate><title>Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat</title><author>Zhu, Xinkai ; Tan, ChorTee ; Cao, Shuanghe ; Yan, Liuling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-3db3fb3411c0208cc7830f63e998d419de88cab28d3cd3b417f05902a282c5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylamide</topic><topic>Alleles</topic><topic>Amino acids</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cultivars</topic><topic>Electrophoresis</topic><topic>Gene deletion</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>growth habit</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Natural mutants</topic><topic>Plant biology</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Polyploidy genomes</topic><topic>Proteins</topic><topic>Triticum aestivum</topic><topic>Triticum monococcum</topic><topic>Vernalization</topic><topic>VRN-2 genes</topic><topic>Wheat</topic><topic>Wheat genome evolution</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xinkai</creatorcontrib><creatorcontrib>Tan, ChorTee</creatorcontrib><creatorcontrib>Cao, Shuanghe</creatorcontrib><creatorcontrib>Yan, Liuling</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xinkai</au><au>Tan, ChorTee</au><au>Cao, Shuanghe</au><au>Yan, Liuling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>27</volume><issue>4</issue><spage>501</spage><epage>510</epage><pages>501-510</pages><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>A dominant allele of the vernalization gene Vrn-2 is the wild type conferring winter growth habit, whereas a recessive vrn-2 allele confers spring growth habit. The recessive vrn-2 allele is mutated due to the deletion of the complete gene (a null form) or alternation of a key amino acid in the VRN-2 protein (a nonfunctional form) in diploid wheat or tetraploid wheat. VRN-2 is also denoted ZCCT due to the presence of a zinc finger and a CCT domain in its protein. There are two paralogous ZCCT genes at the VRN-2 locus in diploid Triticum monococcum and three paralogous ZCCT genes on each of the A and B genomes in tetraploid wheat, but little is known about the allelic variation in VRN-2 in hexaploid wheat. In the study reported here, we performed a one-shot PCR to simultaneously amplify the promoter regions of the three ZCCT-1 genes from hexaploid wheat, including the 302-bp fragment from ZCCT-A1, the 294-bp fragment from ZCCT-B1, and the 320-bp fragment from ZCCT-D1. Each amplicon could be differentiated by electrophoresis in an acrylamide/bisacrylamide gel. This PCR marker for different lengths of the three ZCCT-1 genes was used to search for null alleles in hexaploid wheat. A null allele was found in each of ZCCT-A1, ZCCT-B1, and ZCCT-D1 among 74 cultivars and genetic stocks of U.S. hexaploid wheat. Among 54 Chinese wheat cultivars, breeding lines, and landraces, we identified three accessions carrying a single null allele at ZCCT-A1, three accessions carrying a null allele at ZCCT-B1, and one accession carrying a double null allele at both ZCCT-A1 and ZCCT-D1. The potential application of these natural ZCCT-1 mutant materials in wheat breeding programs and studies on the genetics of wheat is discussed.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s11032-010-9447-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-3743
ispartof Molecular breeding, 2011-04, Vol.27 (4), p.501-510
issn 1380-3743
1572-9788
language eng
recordid cdi_proquest_miscellaneous_902361199
source Springer Nature
subjects Acrylamide
Alleles
Amino acids
Biomedical and Life Sciences
Biotechnology
Cultivars
Electrophoresis
Gene deletion
Genes
Genetics
Genomes
Genomics
growth habit
Life Sciences
Molecular biology
Natural mutants
Plant biology
Plant breeding
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant Sciences
Polyploidy genomes
Proteins
Triticum aestivum
Triticum monococcum
Vernalization
VRN-2 genes
Wheat
Wheat genome evolution
Zinc finger proteins
title Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20differentiation%20of%20null%20alleles%20at%20ZCCT-1%20genes%20on%20the%20A,%20B,%20and%20D%20genomes%20of%20hexaploid%20wheat&rft.jtitle=Molecular%20breeding&rft.au=Zhu,%20Xinkai&rft.date=2011-04-01&rft.volume=27&rft.issue=4&rft.spage=501&rft.epage=510&rft.pages=501-510&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-010-9447-8&rft_dat=%3Cproquest_cross%3E2259498790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-3db3fb3411c0208cc7830f63e998d419de88cab28d3cd3b417f05902a282c5e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259498790&rft_id=info:pmid/&rfr_iscdi=true