Loading…
Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems
Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many m...
Saved in:
Published in: | Frontiers in ecology and the environment 2011-02, Vol.9 (1), p.44-52 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13 |
---|---|
cites | cdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13 |
container_end_page | 52 |
container_issue | 1 |
container_start_page | 44 |
container_title | Frontiers in ecology and the environment |
container_volume | 9 |
creator | Burgin, Amy J Yang, Wendy H Hamilton, Stephen K Silver, Whendee L |
description | Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles. |
doi_str_mv | 10.1890/090227 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902369419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41149676</jstor_id><sourcerecordid>41149676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXAP0DyBFOoHTuJzQZVC0iVWGCOHOfcpiR2sVOq_HsSBRiQmO7p7nt3uofQJSW3VEgyI5LEcXaEJjThJJKMyOMfHcvkFJ2FsCUkZnHCJuj9ATpnS6yVL5zFqpe2ar1bg73DG3fA7QZwU2nvikrVGCz4dYdBO-uaDmu339UQMNTQgG17QHd6aFQWl9Un-AADG7rQQhPO0YlRdYCL7zpFb8vF6_wpWr08Ps_vV5HinPBISi3KxIjMxEawjAmlqCiZUiompjSl4JCIAlLCgEsmWMGo0ZJTSVRWgqFsim7GvTvvPvYQ2rypgoa6VhbcPuR9PiwdDD15PZL9fyF4MPnOV43yXU5JPoSZj2H24GwED1UN3T9UvlwsYkKppJz3jqvRsQ2t878OTimXaZb2czzOVdvtnM0hqL9HvwBYVIkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902369419</pqid></control><display><type>article</type><title>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Burgin, Amy J ; Yang, Wendy H ; Hamilton, Stephen K ; Silver, Whendee L</creator><creatorcontrib>Burgin, Amy J ; Yang, Wendy H ; Hamilton, Stephen K ; Silver, Whendee L</creatorcontrib><description>Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.</description><identifier>ISSN: 1540-9295</identifier><identifier>EISSN: 1540-9309</identifier><identifier>DOI: 10.1890/090227</identifier><language>eng</language><publisher>Ecological Society of America</publisher><subject>Acid soils ; Biogeochemistry ; Biomass ; Energy economics ; Forest soils ; Methane ; Microorganisms ; Oxidation ; REVIEWS ; Sedimentary soils ; Sediments ; Wetland soils</subject><ispartof>Frontiers in ecology and the environment, 2011-02, Vol.9 (1), p.44-52</ispartof><rights>2011 by the Ecological Society of America</rights><rights>Copyright © 2011 Ecological Society of America</rights><rights>The Ecological Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</citedby><cites>FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41149676$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41149676$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Burgin, Amy J</creatorcontrib><creatorcontrib>Yang, Wendy H</creatorcontrib><creatorcontrib>Hamilton, Stephen K</creatorcontrib><creatorcontrib>Silver, Whendee L</creatorcontrib><title>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</title><title>Frontiers in ecology and the environment</title><description>Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.</description><subject>Acid soils</subject><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Energy economics</subject><subject>Forest soils</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Oxidation</subject><subject>REVIEWS</subject><subject>Sedimentary soils</subject><subject>Sediments</subject><subject>Wetland soils</subject><issn>1540-9295</issn><issn>1540-9309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXAP0DyBFOoHTuJzQZVC0iVWGCOHOfcpiR2sVOq_HsSBRiQmO7p7nt3uofQJSW3VEgyI5LEcXaEJjThJJKMyOMfHcvkFJ2FsCUkZnHCJuj9ATpnS6yVL5zFqpe2ar1bg73DG3fA7QZwU2nvikrVGCz4dYdBO-uaDmu339UQMNTQgG17QHd6aFQWl9Un-AADG7rQQhPO0YlRdYCL7zpFb8vF6_wpWr08Ps_vV5HinPBISi3KxIjMxEawjAmlqCiZUiompjSl4JCIAlLCgEsmWMGo0ZJTSVRWgqFsim7GvTvvPvYQ2rypgoa6VhbcPuR9PiwdDD15PZL9fyF4MPnOV43yXU5JPoSZj2H24GwED1UN3T9UvlwsYkKppJz3jqvRsQ2t878OTimXaZb2czzOVdvtnM0hqL9HvwBYVIkA</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Burgin, Amy J</creator><creator>Yang, Wendy H</creator><creator>Hamilton, Stephen K</creator><creator>Silver, Whendee L</creator><general>Ecological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>201102</creationdate><title>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</title><author>Burgin, Amy J ; Yang, Wendy H ; Hamilton, Stephen K ; Silver, Whendee L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acid soils</topic><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Energy economics</topic><topic>Forest soils</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Oxidation</topic><topic>REVIEWS</topic><topic>Sedimentary soils</topic><topic>Sediments</topic><topic>Wetland soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgin, Amy J</creatorcontrib><creatorcontrib>Yang, Wendy H</creatorcontrib><creatorcontrib>Hamilton, Stephen K</creatorcontrib><creatorcontrib>Silver, Whendee L</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Frontiers in ecology and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgin, Amy J</au><au>Yang, Wendy H</au><au>Hamilton, Stephen K</au><au>Silver, Whendee L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</atitle><jtitle>Frontiers in ecology and the environment</jtitle><date>2011-02</date><risdate>2011</risdate><volume>9</volume><issue>1</issue><spage>44</spage><epage>52</epage><pages>44-52</pages><issn>1540-9295</issn><eissn>1540-9309</eissn><abstract>Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.</abstract><pub>Ecological Society of America</pub><doi>10.1890/090227</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-9295 |
ispartof | Frontiers in ecology and the environment, 2011-02, Vol.9 (1), p.44-52 |
issn | 1540-9295 1540-9309 |
language | eng |
recordid | cdi_proquest_miscellaneous_902369419 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | Acid soils Biogeochemistry Biomass Energy economics Forest soils Methane Microorganisms Oxidation REVIEWS Sedimentary soils Sediments Wetland soils |
title | Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20carbon%20and%20nitrogen:%20how%20the%20microbial%20energy%20economy%20couples%20elemental%20cycles%20in%20diverse%20ecosystems&rft.jtitle=Frontiers%20in%20ecology%20and%20the%20environment&rft.au=Burgin,%20Amy%20J&rft.date=2011-02&rft.volume=9&rft.issue=1&rft.spage=44&rft.epage=52&rft.pages=44-52&rft.issn=1540-9295&rft.eissn=1540-9309&rft_id=info:doi/10.1890/090227&rft_dat=%3Cjstor_proqu%3E41149676%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902369419&rft_id=info:pmid/&rft_jstor_id=41149676&rfr_iscdi=true |