Loading…

Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems

Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many m...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in ecology and the environment 2011-02, Vol.9 (1), p.44-52
Main Authors: Burgin, Amy J, Yang, Wendy H, Hamilton, Stephen K, Silver, Whendee L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13
cites cdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13
container_end_page 52
container_issue 1
container_start_page 44
container_title Frontiers in ecology and the environment
container_volume 9
creator Burgin, Amy J
Yang, Wendy H
Hamilton, Stephen K
Silver, Whendee L
description Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.
doi_str_mv 10.1890/090227
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_902369419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41149676</jstor_id><sourcerecordid>41149676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXAP0DyBFOoHTuJzQZVC0iVWGCOHOfcpiR2sVOq_HsSBRiQmO7p7nt3uofQJSW3VEgyI5LEcXaEJjThJJKMyOMfHcvkFJ2FsCUkZnHCJuj9ATpnS6yVL5zFqpe2ar1bg73DG3fA7QZwU2nvikrVGCz4dYdBO-uaDmu339UQMNTQgG17QHd6aFQWl9Un-AADG7rQQhPO0YlRdYCL7zpFb8vF6_wpWr08Ps_vV5HinPBISi3KxIjMxEawjAmlqCiZUiompjSl4JCIAlLCgEsmWMGo0ZJTSVRWgqFsim7GvTvvPvYQ2rypgoa6VhbcPuR9PiwdDD15PZL9fyF4MPnOV43yXU5JPoSZj2H24GwED1UN3T9UvlwsYkKppJz3jqvRsQ2t878OTimXaZb2czzOVdvtnM0hqL9HvwBYVIkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902369419</pqid></control><display><type>article</type><title>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Burgin, Amy J ; Yang, Wendy H ; Hamilton, Stephen K ; Silver, Whendee L</creator><creatorcontrib>Burgin, Amy J ; Yang, Wendy H ; Hamilton, Stephen K ; Silver, Whendee L</creatorcontrib><description>Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.</description><identifier>ISSN: 1540-9295</identifier><identifier>EISSN: 1540-9309</identifier><identifier>DOI: 10.1890/090227</identifier><language>eng</language><publisher>Ecological Society of America</publisher><subject>Acid soils ; Biogeochemistry ; Biomass ; Energy economics ; Forest soils ; Methane ; Microorganisms ; Oxidation ; REVIEWS ; Sedimentary soils ; Sediments ; Wetland soils</subject><ispartof>Frontiers in ecology and the environment, 2011-02, Vol.9 (1), p.44-52</ispartof><rights>2011 by the Ecological Society of America</rights><rights>Copyright © 2011 Ecological Society of America</rights><rights>The Ecological Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</citedby><cites>FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41149676$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41149676$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Burgin, Amy J</creatorcontrib><creatorcontrib>Yang, Wendy H</creatorcontrib><creatorcontrib>Hamilton, Stephen K</creatorcontrib><creatorcontrib>Silver, Whendee L</creatorcontrib><title>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</title><title>Frontiers in ecology and the environment</title><description>Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.</description><subject>Acid soils</subject><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Energy economics</subject><subject>Forest soils</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Oxidation</subject><subject>REVIEWS</subject><subject>Sedimentary soils</subject><subject>Sediments</subject><subject>Wetland soils</subject><issn>1540-9295</issn><issn>1540-9309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXAP0DyBFOoHTuJzQZVC0iVWGCOHOfcpiR2sVOq_HsSBRiQmO7p7nt3uofQJSW3VEgyI5LEcXaEJjThJJKMyOMfHcvkFJ2FsCUkZnHCJuj9ATpnS6yVL5zFqpe2ar1bg73DG3fA7QZwU2nvikrVGCz4dYdBO-uaDmu339UQMNTQgG17QHd6aFQWl9Un-AADG7rQQhPO0YlRdYCL7zpFb8vF6_wpWr08Ps_vV5HinPBISi3KxIjMxEawjAmlqCiZUiompjSl4JCIAlLCgEsmWMGo0ZJTSVRWgqFsim7GvTvvPvYQ2rypgoa6VhbcPuR9PiwdDD15PZL9fyF4MPnOV43yXU5JPoSZj2H24GwED1UN3T9UvlwsYkKppJz3jqvRsQ2t878OTimXaZb2czzOVdvtnM0hqL9HvwBYVIkA</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Burgin, Amy J</creator><creator>Yang, Wendy H</creator><creator>Hamilton, Stephen K</creator><creator>Silver, Whendee L</creator><general>Ecological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>201102</creationdate><title>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</title><author>Burgin, Amy J ; Yang, Wendy H ; Hamilton, Stephen K ; Silver, Whendee L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acid soils</topic><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Energy economics</topic><topic>Forest soils</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Oxidation</topic><topic>REVIEWS</topic><topic>Sedimentary soils</topic><topic>Sediments</topic><topic>Wetland soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgin, Amy J</creatorcontrib><creatorcontrib>Yang, Wendy H</creatorcontrib><creatorcontrib>Hamilton, Stephen K</creatorcontrib><creatorcontrib>Silver, Whendee L</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Frontiers in ecology and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgin, Amy J</au><au>Yang, Wendy H</au><au>Hamilton, Stephen K</au><au>Silver, Whendee L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems</atitle><jtitle>Frontiers in ecology and the environment</jtitle><date>2011-02</date><risdate>2011</risdate><volume>9</volume><issue>1</issue><spage>44</spage><epage>52</epage><pages>44-52</pages><issn>1540-9295</issn><eissn>1540-9309</eissn><abstract>Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.</abstract><pub>Ecological Society of America</pub><doi>10.1890/090227</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-9295
ispartof Frontiers in ecology and the environment, 2011-02, Vol.9 (1), p.44-52
issn 1540-9295
1540-9309
language eng
recordid cdi_proquest_miscellaneous_902369419
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Acid soils
Biogeochemistry
Biomass
Energy economics
Forest soils
Methane
Microorganisms
Oxidation
REVIEWS
Sedimentary soils
Sediments
Wetland soils
title Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20carbon%20and%20nitrogen:%20how%20the%20microbial%20energy%20economy%20couples%20elemental%20cycles%20in%20diverse%20ecosystems&rft.jtitle=Frontiers%20in%20ecology%20and%20the%20environment&rft.au=Burgin,%20Amy%20J&rft.date=2011-02&rft.volume=9&rft.issue=1&rft.spage=44&rft.epage=52&rft.pages=44-52&rft.issn=1540-9295&rft.eissn=1540-9309&rft_id=info:doi/10.1890/090227&rft_dat=%3Cjstor_proqu%3E41149676%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4404-99c8d5f87f2f83738aa18d3aaa20fdfd84e58be603e49383b31fc94190a7def13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=902369419&rft_id=info:pmid/&rft_jstor_id=41149676&rfr_iscdi=true