Loading…

Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA

Abstract Combined treatment of anticancer drugs and small interfering RNAs (siRNAs) have emerged as a new modality of anticancer therapy. Here, we describe a co-delivery system of anticancer drugs and siRNA in which anticancer drug-derived lipids form cationic nanoparticles for siRNA complexation. T...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2011-12, Vol.32 (36), p.9785-9795
Main Authors: Chang, Rae Sung, Suh, Min Sung, Kim, Sunil, Shim, Gayong, Lee, Sangbin, Han, Sung Sik, Lee, Kyung Eun, Jeon, Hyesung, Choi, Han-Gon, Choi, Yongseok, Kim, Chan-Wha, Oh, Yu-Kyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Combined treatment of anticancer drugs and small interfering RNAs (siRNAs) have emerged as a new modality of anticancer therapy. Here, we describe a co-delivery system of anticancer drugs and siRNA in which anticancer drug-derived lipids form cationic nanoparticles for siRNA complexation. The anticancer drug mitoxantrone (MTO) was conjugated to palmitoleic acid, generating two types of palmitoleyl MTO (Pal-MTO) lipids: monopalmitoleyl MTO (mono-Pal-MTO) and dipalmitoleyl MTO (di-Pal-MTO). Among various lipid compositions of MTO, nanoparticles containing mono-Pal-MTO and di-Pal-MTO at a molar ratio of 1:1 (md11-Pal-MTO nanoparticles) showed the most efficient cellular delivery of siRNA, higher than that of Lipofectamine 2000. Delivery of red fluorescence protein-specific siRNA into B16F10-RFP cells using md11-Pal-MTO nanoparticles reduced the expression of RFP at both mRNA and protein levels, demonstrating silencing of the siRNA target gene. Moreover, delivery of Mcl-1-specific anticancer siRNA (siMcl-1) using md11-Pal-MTO enhanced antitumor activity in vitro, reducing tumor cell viability by 81% compared to a reduction of 68% following Lipofectamine 2000-mediated transfection of siMcl-1. Intratumoral administration of siMcl-1 using md11-Pal-MTO nanoparticles significantly inhibited tumor growth, reducing tumor size by 83% compared to untreated controls. Our results suggest the potential of md11-Pal-MTO multifunctional nanoparticles for co-delivery of anticancer siRNAs for effective combination therapy.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2011.09.017