Loading…

Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction

Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2011-08, Vol.681, p.154-172
Main Authors: KAMETANI, YUKINORI, FUKAGATA, KOJI
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-6ef373335fa3632f3948096f77d3c332ca268edc1c47de76033a021fa4e4d92d3
cites cdi_FETCH-LOGICAL-c396t-6ef373335fa3632f3948096f77d3c332ca268edc1c47de76033a021fa4e4d92d3
container_end_page 172
container_issue
container_start_page 154
container_title Journal of fluid mechanics
container_volume 681
creator KAMETANI, YUKINORI
FUKAGATA, KOJI
description Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to be 3000. A constant wall-normal velocity is applied on the wall in the range, −0.01U∞ ≤ Vctr ≤ 0.01U∞. The DNS results show that UB reduces the skin friction drag, while US increases it. The turbulent fluctuations exhibit the opposite trend: UB enhances the turbulence, while US suppresses it. Dynamical decomposition of the local skin friction coefficient cf using the identity equation (FIK identity) (Fukagata, Iwamoto & Kasagi, Phys. Fluids, vol. 14, 2002, pp. L73–L76) reveals that the mean convection term in UB case works as a strong drag reduction factor, while that in US case works as a strong drag augmentation factor: in both cases, the contribution of mean convection on the friction drag overwhelms the turbulent contribution. It is also found that the control efficiency of UB is much higher than that of the advanced active control methods proposed for channel flows.
doi_str_mv 10.1017/jfm.2011.219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_902370538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2011_219</cupid><sourcerecordid>1642303102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-6ef373335fa3632f3948096f77d3c332ca268edc1c47de76033a021fa4e4d92d3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOI7e_AFBED3YY5JKJ52jrJ-w4EXPIZNO1gzpZEw6u8y_N8MOCiKeqg5PPUXVi9BzSnaUUPn24JcdI5TuGFUP0IZyoQYp-PgQbQhhbKCUkcfoSa0HQigQJTdoeR-KsytObXElWBNxDUuLZg054exxPfbWxHjCs7t1MR9DusFrK_sWXVrxPrc0m3LC0ZxcqfgurD9wS8HnsuB9zHdnPBdcmz0bn6JH3sTqnl3qFn3_-OHb1efh-uunL1fvrgcLSqyDcB4kAIzegADmQfGJKOGlnMECMGuYmNxsqeVydlIQAEMY9YY7Pis2wxa9uvceS_7ZXF31Eqp1MZrkcqtaEQaSjDB18vV_SSo4AwK0D2zRi7_QQ24l9Tv0NI2cSjXSDr25h2zJtRbn9bGEpX9IU6LPIekekj6HpHtIHX95cZran--LSTbU3zOMc8L5KDu3u2jNsi9hvnF_lv9T_AumiqH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885417951</pqid></control><display><type>article</type><title>Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction</title><source>Cambridge University Press</source><creator>KAMETANI, YUKINORI ; FUKAGATA, KOJI</creator><creatorcontrib>KAMETANI, YUKINORI ; FUKAGATA, KOJI</creatorcontrib><description>Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to be 3000. A constant wall-normal velocity is applied on the wall in the range, −0.01U∞ ≤ Vctr ≤ 0.01U∞. The DNS results show that UB reduces the skin friction drag, while US increases it. The turbulent fluctuations exhibit the opposite trend: UB enhances the turbulence, while US suppresses it. Dynamical decomposition of the local skin friction coefficient cf using the identity equation (FIK identity) (Fukagata, Iwamoto &amp; Kasagi, Phys. Fluids, vol. 14, 2002, pp. L73–L76) reveals that the mean convection term in UB case works as a strong drag reduction factor, while that in US case works as a strong drag augmentation factor: in both cases, the contribution of mean convection on the friction drag overwhelms the turbulent contribution. It is also found that the control efficiency of UB is much higher than that of the advanced active control methods proposed for channel flows.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2011.219</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Blowing ; Boundary layer ; Boundary layer and shear turbulence ; Boundary layers ; Computational fluid dynamics ; Convection ; Drag ; Drag reduction ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Friction ; Fundamental areas of phenomenology (including applications) ; Numerical analysis ; Physics ; Reynolds number ; Skin friction ; Turbulence ; Turbulence control ; Turbulent flow ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2011-08, Vol.681, p.154-172</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-6ef373335fa3632f3948096f77d3c332ca268edc1c47de76033a021fa4e4d92d3</citedby><cites>FETCH-LOGICAL-c396t-6ef373335fa3632f3948096f77d3c332ca268edc1c47de76033a021fa4e4d92d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011002199/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24404457$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KAMETANI, YUKINORI</creatorcontrib><creatorcontrib>FUKAGATA, KOJI</creatorcontrib><title>Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to be 3000. A constant wall-normal velocity is applied on the wall in the range, −0.01U∞ ≤ Vctr ≤ 0.01U∞. The DNS results show that UB reduces the skin friction drag, while US increases it. The turbulent fluctuations exhibit the opposite trend: UB enhances the turbulence, while US suppresses it. Dynamical decomposition of the local skin friction coefficient cf using the identity equation (FIK identity) (Fukagata, Iwamoto &amp; Kasagi, Phys. Fluids, vol. 14, 2002, pp. L73–L76) reveals that the mean convection term in UB case works as a strong drag reduction factor, while that in US case works as a strong drag augmentation factor: in both cases, the contribution of mean convection on the friction drag overwhelms the turbulent contribution. It is also found that the control efficiency of UB is much higher than that of the advanced active control methods proposed for channel flows.</description><subject>Blowing</subject><subject>Boundary layer</subject><subject>Boundary layer and shear turbulence</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Drag</subject><subject>Drag reduction</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Friction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Skin friction</subject><subject>Turbulence</subject><subject>Turbulence control</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOI7e_AFBED3YY5JKJ52jrJ-w4EXPIZNO1gzpZEw6u8y_N8MOCiKeqg5PPUXVi9BzSnaUUPn24JcdI5TuGFUP0IZyoQYp-PgQbQhhbKCUkcfoSa0HQigQJTdoeR-KsytObXElWBNxDUuLZg054exxPfbWxHjCs7t1MR9DusFrK_sWXVrxPrc0m3LC0ZxcqfgurD9wS8HnsuB9zHdnPBdcmz0bn6JH3sTqnl3qFn3_-OHb1efh-uunL1fvrgcLSqyDcB4kAIzegADmQfGJKOGlnMECMGuYmNxsqeVydlIQAEMY9YY7Pis2wxa9uvceS_7ZXF31Eqp1MZrkcqtaEQaSjDB18vV_SSo4AwK0D2zRi7_QQ24l9Tv0NI2cSjXSDr25h2zJtRbn9bGEpX9IU6LPIekekj6HpHtIHX95cZran--LSTbU3zOMc8L5KDu3u2jNsi9hvnF_lv9T_AumiqH0</recordid><startdate>20110825</startdate><enddate>20110825</enddate><creator>KAMETANI, YUKINORI</creator><creator>FUKAGATA, KOJI</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110825</creationdate><title>Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction</title><author>KAMETANI, YUKINORI ; FUKAGATA, KOJI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-6ef373335fa3632f3948096f77d3c332ca268edc1c47de76033a021fa4e4d92d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Blowing</topic><topic>Boundary layer</topic><topic>Boundary layer and shear turbulence</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Drag</topic><topic>Drag reduction</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Friction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Skin friction</topic><topic>Turbulence</topic><topic>Turbulence control</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KAMETANI, YUKINORI</creatorcontrib><creatorcontrib>FUKAGATA, KOJI</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAMETANI, YUKINORI</au><au>FUKAGATA, KOJI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2011-08-25</date><risdate>2011</risdate><volume>681</volume><spage>154</spage><epage>172</epage><pages>154-172</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to be 3000. A constant wall-normal velocity is applied on the wall in the range, −0.01U∞ ≤ Vctr ≤ 0.01U∞. The DNS results show that UB reduces the skin friction drag, while US increases it. The turbulent fluctuations exhibit the opposite trend: UB enhances the turbulence, while US suppresses it. Dynamical decomposition of the local skin friction coefficient cf using the identity equation (FIK identity) (Fukagata, Iwamoto &amp; Kasagi, Phys. Fluids, vol. 14, 2002, pp. L73–L76) reveals that the mean convection term in UB case works as a strong drag reduction factor, while that in US case works as a strong drag augmentation factor: in both cases, the contribution of mean convection on the friction drag overwhelms the turbulent contribution. It is also found that the control efficiency of UB is much higher than that of the advanced active control methods proposed for channel flows.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2011.219</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2011-08, Vol.681, p.154-172
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_902370538
source Cambridge University Press
subjects Blowing
Boundary layer
Boundary layer and shear turbulence
Boundary layers
Computational fluid dynamics
Convection
Drag
Drag reduction
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fluid flow
Fluid mechanics
Friction
Fundamental areas of phenomenology (including applications)
Numerical analysis
Physics
Reynolds number
Skin friction
Turbulence
Turbulence control
Turbulent flow
Turbulent flows, convection, and heat transfer
title Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulation%20of%20spatially%20developing%20turbulent%20boundary%20layers%20with%20uniform%20blowing%20or%20suction&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=KAMETANI,%20YUKINORI&rft.date=2011-08-25&rft.volume=681&rft.spage=154&rft.epage=172&rft.pages=154-172&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2011.219&rft_dat=%3Cproquest_cross%3E1642303102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-6ef373335fa3632f3948096f77d3c332ca268edc1c47de76033a021fa4e4d92d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885417951&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2011_219&rfr_iscdi=true