Loading…

Separation of solar radio bursts in a complex spectrum

Radio spectra, observed during solar flares, are usually very complex (many bursts and fine structures). We have developed a new method to separate them into individual bursts and analyze them separately. The method is used in the analysis of the 0.8–2.0 GHz radio spectrum of the April 11, 2001 even...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the International Astronomical Union 2010-09, Vol.6 (S274), p.150-152
Main Authors: Mészárosová, Hana, Rybák, Ján, Karlický, Marian, Jiricka, Karel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radio spectra, observed during solar flares, are usually very complex (many bursts and fine structures). We have developed a new method to separate them into individual bursts and analyze them separately. The method is used in the analysis of the 0.8–2.0 GHz radio spectrum of the April 11, 2001 event, which was rich in drifting pulsating structures (DPSs). Using this method we showed that the complex radio spectrum consists of at least four DPSs separated with respect to their different frequency drifts (−115, −36, −23, and −11 MHz s−1). These DPSs indicate a presence of at least four plasmoids expected to be formed in a flaring current sheet. These plasmoids produce the radio emission on close frequencies giving thus a mixture of superimposed DPSs observed in the radio spectrum.
ISSN:1743-9213
1743-9221
DOI:10.1017/S1743921311006788