Loading…

The role of homologous recombination in radiation-induced double-strand break repair

Abstract DNA double-strand breaks (DSBs) represent the most biologically significant lesions induced by ionizing radiation (IR). HR is the predominant pathway for repairing one-ended DSBs arising in S-phase when the replication fork encounters single-stranded breaks or base damages. Here, we discuss...

Full description

Saved in:
Bibliographic Details
Published in:Radiotherapy and oncology 2011-10, Vol.101 (1), p.7-12
Main Authors: Jeggo, Penny A, Geuting, Verena, Löbrich, Markus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract DNA double-strand breaks (DSBs) represent the most biologically significant lesions induced by ionizing radiation (IR). HR is the predominant pathway for repairing one-ended DSBs arising in S-phase when the replication fork encounters single-stranded breaks or base damages. Here, we discuss recent findings that two-ended DSBs directly induced by X- or γ-rays in late S- or G2-phase are repaired predominantly by NHEJ, with HR only repairing a sub-fraction of such DSBs. This sub-fraction represents DSBs which localize to heterochromatic DNA regions and, which in control cells, are repaired with slow kinetics over many hours post irradiation. The observation that defined DSB populations are repaired by either NHEJ or HR suggests an assignment of specific tasks for each of the two processes. Furthermore, heavy ion induced complex DSBs, which are in general more slowly repaired than X- or γ-ray induced breaks, are nearly always repaired by HR independent of chromatin localization suggesting that the speed of repair is an important factor determining the DSB repair pathway usage. Finally, NHEJ and HR can, under certain conditions, also compensate for each other such that DSBs normally repaired by one pathway can undergo repair by the other if genetic failures necessitate the pathway switch.
ISSN:0167-8140
1879-0887
DOI:10.1016/j.radonc.2011.06.019