Loading…
Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation
Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the mo...
Saved in:
Published in: | Chemical engineering science 2009-05, Vol.64 (10), p.2281-2290 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3 |
container_end_page | 2290 |
container_issue | 10 |
container_start_page | 2281 |
container_title | Chemical engineering science |
container_volume | 64 |
creator | Das, A.K. Das, P.K. |
description | Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations. |
doi_str_mv | 10.1016/j.ces.2009.01.053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903623192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250909000591</els_id><sourcerecordid>20746972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EEkvhA3DzBTglzMTxJoETrfhTqVIv5Ww59njXqyRe7GTV_fZ4uxXH0tNoZn7vjTSPsfcIJQKuP-9KQ6msALoSsAQpXrAVto0o6hrkS7aCvCkqCd1r9ialXW6bBmHF7i-Xvh-I0yEMy-zDxOdtDMtmy9PSjxQ3ZHmI3nlDfEl-2vA0hjBv83iv4-xN1m6PNgZ7nPToTfrCL3XyhrsQx2XQD5Z6snwMlgZ-0IO3D8O37JXTQ6J3j_WC_f7x_e7qV3Fz-_P66ttNYSS2cyF721kUtW7QrB1KBOMIaiOwJTJt2zZt22vosUKHPdV9VlEmhKHO1k6LC_bp7LuP4c9CaVajT4aGQU8UlqQ6EOtKYFdl8uOTpMivrGWLzwBRZlj-F6ygqdddczqNZ9DEkFIkp_bRjzoeFYI65at2KuerTvkqQJXzzZoPj-Y6GT24qCfj0z9hhRIQKsjc1zNH-csHT1El42kyZH0kMysb_BNX_gKyAr0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20746972</pqid></control><display><type>article</type><title>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Das, A.K. ; Das, P.K.</creator><creatorcontrib>Das, A.K. ; Das, P.K.</creatorcontrib><description>Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2009.01.053</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bubble ; Chemical engineering ; Exact sciences and technology ; Hydrodynamics ; Hydrodynamics of contact apparatus ; Multiphase flow ; Particle ; Smoothed particle hydrodynamics ; Smoothening function ; Submerged orifice</subject><ispartof>Chemical engineering science, 2009-05, Vol.64 (10), p.2281-2290</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</citedby><cites>FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21501020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, A.K.</creatorcontrib><creatorcontrib>Das, P.K.</creatorcontrib><title>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</title><title>Chemical engineering science</title><description>Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations.</description><subject>Applied sciences</subject><subject>Bubble</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Hydrodynamics</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Multiphase flow</subject><subject>Particle</subject><subject>Smoothed particle hydrodynamics</subject><subject>Smoothening function</subject><subject>Submerged orifice</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EEkvhA3DzBTglzMTxJoETrfhTqVIv5Ww59njXqyRe7GTV_fZ4uxXH0tNoZn7vjTSPsfcIJQKuP-9KQ6msALoSsAQpXrAVto0o6hrkS7aCvCkqCd1r9ialXW6bBmHF7i-Xvh-I0yEMy-zDxOdtDMtmy9PSjxQ3ZHmI3nlDfEl-2vA0hjBv83iv4-xN1m6PNgZ7nPToTfrCL3XyhrsQx2XQD5Z6snwMlgZ-0IO3D8O37JXTQ6J3j_WC_f7x_e7qV3Fz-_P66ttNYSS2cyF721kUtW7QrB1KBOMIaiOwJTJt2zZt22vosUKHPdV9VlEmhKHO1k6LC_bp7LuP4c9CaVajT4aGQU8UlqQ6EOtKYFdl8uOTpMivrGWLzwBRZlj-F6ygqdddczqNZ9DEkFIkp_bRjzoeFYI65at2KuerTvkqQJXzzZoPj-Y6GT24qCfj0z9hhRIQKsjc1zNH-csHT1El42kyZH0kMysb_BNX_gKyAr0U</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Das, A.K.</creator><creator>Das, P.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090501</creationdate><title>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</title><author>Das, A.K. ; Das, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Bubble</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Hydrodynamics</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Multiphase flow</topic><topic>Particle</topic><topic>Smoothed particle hydrodynamics</topic><topic>Smoothening function</topic><topic>Submerged orifice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, A.K.</creatorcontrib><creatorcontrib>Das, P.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, A.K.</au><au>Das, P.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</atitle><jtitle>Chemical engineering science</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>64</volume><issue>10</issue><spage>2281</spage><epage>2290</epage><pages>2281-2290</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2009.01.053</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2009-05, Vol.64 (10), p.2281-2290 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_903623192 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Bubble Chemical engineering Exact sciences and technology Hydrodynamics Hydrodynamics of contact apparatus Multiphase flow Particle Smoothed particle hydrodynamics Smoothening function Submerged orifice |
title | Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20evolution%20through%20submerged%20orifice%20using%20smoothed%20particle%20hydrodynamics:%20Basic%20formulation%20and%20model%20validation&rft.jtitle=Chemical%20engineering%20science&rft.au=Das,%20A.K.&rft.date=2009-05-01&rft.volume=64&rft.issue=10&rft.spage=2281&rft.epage=2290&rft.pages=2281-2290&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2009.01.053&rft_dat=%3Cproquest_cross%3E20746972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20746972&rft_id=info:pmid/&rfr_iscdi=true |