Loading…

Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation

Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the mo...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2009-05, Vol.64 (10), p.2281-2290
Main Authors: Das, A.K., Das, P.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3
cites cdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3
container_end_page 2290
container_issue 10
container_start_page 2281
container_title Chemical engineering science
container_volume 64
creator Das, A.K.
Das, P.K.
description Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations.
doi_str_mv 10.1016/j.ces.2009.01.053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903623192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250909000591</els_id><sourcerecordid>20746972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EEkvhA3DzBTglzMTxJoETrfhTqVIv5Ww59njXqyRe7GTV_fZ4uxXH0tNoZn7vjTSPsfcIJQKuP-9KQ6msALoSsAQpXrAVto0o6hrkS7aCvCkqCd1r9ialXW6bBmHF7i-Xvh-I0yEMy-zDxOdtDMtmy9PSjxQ3ZHmI3nlDfEl-2vA0hjBv83iv4-xN1m6PNgZ7nPToTfrCL3XyhrsQx2XQD5Z6snwMlgZ-0IO3D8O37JXTQ6J3j_WC_f7x_e7qV3Fz-_P66ttNYSS2cyF721kUtW7QrB1KBOMIaiOwJTJt2zZt22vosUKHPdV9VlEmhKHO1k6LC_bp7LuP4c9CaVajT4aGQU8UlqQ6EOtKYFdl8uOTpMivrGWLzwBRZlj-F6ygqdddczqNZ9DEkFIkp_bRjzoeFYI65at2KuerTvkqQJXzzZoPj-Y6GT24qCfj0z9hhRIQKsjc1zNH-csHT1El42kyZH0kMysb_BNX_gKyAr0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20746972</pqid></control><display><type>article</type><title>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Das, A.K. ; Das, P.K.</creator><creatorcontrib>Das, A.K. ; Das, P.K.</creatorcontrib><description>Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2009.01.053</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bubble ; Chemical engineering ; Exact sciences and technology ; Hydrodynamics ; Hydrodynamics of contact apparatus ; Multiphase flow ; Particle ; Smoothed particle hydrodynamics ; Smoothening function ; Submerged orifice</subject><ispartof>Chemical engineering science, 2009-05, Vol.64 (10), p.2281-2290</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</citedby><cites>FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21501020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, A.K.</creatorcontrib><creatorcontrib>Das, P.K.</creatorcontrib><title>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</title><title>Chemical engineering science</title><description>Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations.</description><subject>Applied sciences</subject><subject>Bubble</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Hydrodynamics</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Multiphase flow</subject><subject>Particle</subject><subject>Smoothed particle hydrodynamics</subject><subject>Smoothening function</subject><subject>Submerged orifice</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EEkvhA3DzBTglzMTxJoETrfhTqVIv5Ww59njXqyRe7GTV_fZ4uxXH0tNoZn7vjTSPsfcIJQKuP-9KQ6msALoSsAQpXrAVto0o6hrkS7aCvCkqCd1r9ialXW6bBmHF7i-Xvh-I0yEMy-zDxOdtDMtmy9PSjxQ3ZHmI3nlDfEl-2vA0hjBv83iv4-xN1m6PNgZ7nPToTfrCL3XyhrsQx2XQD5Z6snwMlgZ-0IO3D8O37JXTQ6J3j_WC_f7x_e7qV3Fz-_P66ttNYSS2cyF721kUtW7QrB1KBOMIaiOwJTJt2zZt22vosUKHPdV9VlEmhKHO1k6LC_bp7LuP4c9CaVajT4aGQU8UlqQ6EOtKYFdl8uOTpMivrGWLzwBRZlj-F6ygqdddczqNZ9DEkFIkp_bRjzoeFYI65at2KuerTvkqQJXzzZoPj-Y6GT24qCfj0z9hhRIQKsjc1zNH-csHT1El42kyZH0kMysb_BNX_gKyAr0U</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Das, A.K.</creator><creator>Das, P.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090501</creationdate><title>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</title><author>Das, A.K. ; Das, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Bubble</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Hydrodynamics</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Multiphase flow</topic><topic>Particle</topic><topic>Smoothed particle hydrodynamics</topic><topic>Smoothening function</topic><topic>Submerged orifice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, A.K.</creatorcontrib><creatorcontrib>Das, P.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, A.K.</au><au>Das, P.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation</atitle><jtitle>Chemical engineering science</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>64</volume><issue>10</issue><spage>2281</spage><epage>2290</epage><pages>2281-2290</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Smoothed particle hydrodynamics is used to simulate the bubble evolution in liquid pool through a submerged orifice. Discontinuities in the physical properties along the interface are taken care using appropriate smoothening functions. Surface tension at the interfacial plane is also added in the momentum equation to track the evolution of the bubbles. To prevent abrupt intrusion of one fluid into the other no penetration force is applied for two closely situated particles of different properties. Solid walls are modelled with two layer of virtual particle along the boundary. Further, the use of corrective form of kernel approximation eradicates the inherent particle deficiency at the interface and solid boundary. The model is capable to simulate the growth of the bubble, neck formation and its detachment from the orifice along with the dynamic velocity field in both the phases. Comparison between the numerical bubble contour and published results shows excellent predictability of the model. The volume of the bubble at the detachment and the bubble frequency are compared satisfactorily with available experimental observations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2009.01.053</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2009-05, Vol.64 (10), p.2281-2290
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_903623192
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Bubble
Chemical engineering
Exact sciences and technology
Hydrodynamics
Hydrodynamics of contact apparatus
Multiphase flow
Particle
Smoothed particle hydrodynamics
Smoothening function
Submerged orifice
title Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20evolution%20through%20submerged%20orifice%20using%20smoothed%20particle%20hydrodynamics:%20Basic%20formulation%20and%20model%20validation&rft.jtitle=Chemical%20engineering%20science&rft.au=Das,%20A.K.&rft.date=2009-05-01&rft.volume=64&rft.issue=10&rft.spage=2281&rft.epage=2290&rft.pages=2281-2290&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2009.01.053&rft_dat=%3Cproquest_cross%3E20746972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-5bd9d134a71c6f1510cfe04c318eec888788ba0b121f1be4b518efe03ce9d4fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20746972&rft_id=info:pmid/&rfr_iscdi=true