Loading…

Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation

Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering 2008-04, Vol.5 (2), p.197-206
Main Authors: Mokaberi, B., Requicha, A.A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2007.895008