Loading…
Metal oxide nanoparticles for advanced energy applications
Hot-wire chemical vapor deposition (HWCVD) has been employed as an economically scalable method for the deposition of crystalline molybdenum oxide nanoparticles at high density. Under optimal synthesis conditions, only crystalline nanostructures with a smallest dimension of ~ 3–50 nm are observed wi...
Saved in:
Published in: | Thin solid films 2009-04, Vol.517 (12), p.3591-3595 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hot-wire chemical vapor deposition (HWCVD) has been employed as an economically scalable method for the deposition of crystalline molybdenum oxide nanoparticles at high density. Under optimal synthesis conditions, only crystalline nanostructures with a smallest dimension of ~
3–50 nm are observed with extensive transmission electron microscopy analyses. The incorporation of crystalline molybdenum oxide nanoparticles into battery electrodes has led to profound advancements in state-of-the-art negative electrodes (anodes) in lithium-ion batteries. The nanoparticle materials exhibit a high rate capability as anticipated for the reduced solid-state Li-ion diffusion length. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2009.01.061 |