Loading…

An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect

The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling 2009-09, Vol.33 (9), p.3617-3635
Main Authors: Gaikwad, S.N., Malashetty, M.S., Rama Prasad, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953
cites cdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953
container_end_page 3635
container_issue 9
container_start_page 3617
container_title Applied mathematical modelling
container_volume 33
creator Gaikwad, S.N.
Malashetty, M.S.
Rama Prasad, K.
description The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.
doi_str_mv 10.1016/j.apm.2008.12.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903636298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08003314</els_id><sourcerecordid>34444552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhVlo4tj6AO7YqKsuL0UVVcTVZOJfMokLNXFHKLhEOjSUQLXpJ_C1ZdIdl7MiN3zn3JtzCHnFoGPAxLtDp9dj1wPMHes7YPwJuQEO017C8PMZeV7KAQDGNt2Qv7eR6qjDuXqjAy11s2eaHA0-os7ty9KY4nWyaVsCUuud24o_ITUpntBUnyL1zYe6sHlLi65b1hVtk_uSak6rN3RNOW2FBn3GTP_4-ot-SxkrReeaxQvy1OlQ8OX13ZEfHz98v_u8v__66cvd7f3eDJzX_SSsGIZBC8cmpwcJ2oB002yXYQK5THLmkoOUTIwcFzO5fgTB5sWAQ9nLke_I24vvmtPvDUtVR18MhqAjtvOUBC646JvPjrx5lOTtjmEc-wayC2hyKiWjU2v2R53PioF6KEQdVCtEPRSiWK9aIU3z-mquS8vdZR2NL_-FPRsZ8Fk07v2Fw5bJyWNWxXiMBq3PLTVlk39kyz-i56RL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34444552</pqid></control><display><type>article</type><title>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</title><source>ScienceDirect Freedom Collection</source><creator>Gaikwad, S.N. ; Malashetty, M.S. ; Rama Prasad, K.</creator><creatorcontrib>Gaikwad, S.N. ; Malashetty, M.S. ; Rama Prasad, K.</creatorcontrib><description>The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.12.013</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Anisotropic porous layer ; Convection and heat transfer ; Convective and constrained heat transfer ; Critical Rayleigh number ; Double diffusive convection ; Double Fourier series ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Lewis number ; Nonhomogeneous flows ; Physics ; Soret parameter ; Turbulent flows, convection, and heat transfer</subject><ispartof>Applied mathematical modelling, 2009-09, Vol.33 (9), p.3617-3635</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</citedby><cites>FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21510386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaikwad, S.N.</creatorcontrib><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Rama Prasad, K.</creatorcontrib><title>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</title><title>Applied mathematical modelling</title><description>The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.</description><subject>Anisotropic porous layer</subject><subject>Convection and heat transfer</subject><subject>Convective and constrained heat transfer</subject><subject>Critical Rayleigh number</subject><subject>Double diffusive convection</subject><subject>Double Fourier series</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Lewis number</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Soret parameter</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhVlo4tj6AO7YqKsuL0UVVcTVZOJfMokLNXFHKLhEOjSUQLXpJ_C1ZdIdl7MiN3zn3JtzCHnFoGPAxLtDp9dj1wPMHes7YPwJuQEO017C8PMZeV7KAQDGNt2Qv7eR6qjDuXqjAy11s2eaHA0-os7ty9KY4nWyaVsCUuud24o_ITUpntBUnyL1zYe6sHlLi65b1hVtk_uSak6rN3RNOW2FBn3GTP_4-ot-SxkrReeaxQvy1OlQ8OX13ZEfHz98v_u8v__66cvd7f3eDJzX_SSsGIZBC8cmpwcJ2oB002yXYQK5THLmkoOUTIwcFzO5fgTB5sWAQ9nLke_I24vvmtPvDUtVR18MhqAjtvOUBC646JvPjrx5lOTtjmEc-wayC2hyKiWjU2v2R53PioF6KEQdVCtEPRSiWK9aIU3z-mquS8vdZR2NL_-FPRsZ8Fk07v2Fw5bJyWNWxXiMBq3PLTVlk39kyz-i56RL</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Gaikwad, S.N.</creator><creator>Malashetty, M.S.</creator><creator>Rama Prasad, K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090901</creationdate><title>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</title><author>Gaikwad, S.N. ; Malashetty, M.S. ; Rama Prasad, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anisotropic porous layer</topic><topic>Convection and heat transfer</topic><topic>Convective and constrained heat transfer</topic><topic>Critical Rayleigh number</topic><topic>Double diffusive convection</topic><topic>Double Fourier series</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Lewis number</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Soret parameter</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, S.N.</creatorcontrib><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Rama Prasad, K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, S.N.</au><au>Malashetty, M.S.</au><au>Rama Prasad, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>33</volume><issue>9</issue><spage>3617</spage><epage>3635</epage><pages>3617-3635</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.12.013</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2009-09, Vol.33 (9), p.3617-3635
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_903636298
source ScienceDirect Freedom Collection
subjects Anisotropic porous layer
Convection and heat transfer
Convective and constrained heat transfer
Critical Rayleigh number
Double diffusive convection
Double Fourier series
Exact sciences and technology
Flows through porous media
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat transfer
Lewis number
Nonhomogeneous flows
Physics
Soret parameter
Turbulent flows, convection, and heat transfer
title An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20study%20of%20linear%20and%20nonlinear%20double%20diffusive%20convection%20in%20a%20fluid%20saturated%20anisotropic%20porous%20layer%20with%20Soret%20effect&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Gaikwad,%20S.N.&rft.date=2009-09-01&rft.volume=33&rft.issue=9&rft.spage=3617&rft.epage=3635&rft.pages=3617-3635&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2008.12.013&rft_dat=%3Cproquest_cross%3E34444552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34444552&rft_id=info:pmid/&rfr_iscdi=true