Loading…
An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect
The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the...
Saved in:
Published in: | Applied mathematical modelling 2009-09, Vol.33 (9), p.3617-3635 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953 |
container_end_page | 3635 |
container_issue | 9 |
container_start_page | 3617 |
container_title | Applied mathematical modelling |
container_volume | 33 |
creator | Gaikwad, S.N. Malashetty, M.S. Rama Prasad, K. |
description | The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically. |
doi_str_mv | 10.1016/j.apm.2008.12.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903636298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08003314</els_id><sourcerecordid>34444552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhVlo4tj6AO7YqKsuL0UVVcTVZOJfMokLNXFHKLhEOjSUQLXpJ_C1ZdIdl7MiN3zn3JtzCHnFoGPAxLtDp9dj1wPMHes7YPwJuQEO017C8PMZeV7KAQDGNt2Qv7eR6qjDuXqjAy11s2eaHA0-os7ty9KY4nWyaVsCUuud24o_ITUpntBUnyL1zYe6sHlLi65b1hVtk_uSak6rN3RNOW2FBn3GTP_4-ot-SxkrReeaxQvy1OlQ8OX13ZEfHz98v_u8v__66cvd7f3eDJzX_SSsGIZBC8cmpwcJ2oB002yXYQK5THLmkoOUTIwcFzO5fgTB5sWAQ9nLke_I24vvmtPvDUtVR18MhqAjtvOUBC646JvPjrx5lOTtjmEc-wayC2hyKiWjU2v2R53PioF6KEQdVCtEPRSiWK9aIU3z-mquS8vdZR2NL_-FPRsZ8Fk07v2Fw5bJyWNWxXiMBq3PLTVlk39kyz-i56RL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34444552</pqid></control><display><type>article</type><title>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</title><source>ScienceDirect Freedom Collection</source><creator>Gaikwad, S.N. ; Malashetty, M.S. ; Rama Prasad, K.</creator><creatorcontrib>Gaikwad, S.N. ; Malashetty, M.S. ; Rama Prasad, K.</creatorcontrib><description>The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.12.013</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Anisotropic porous layer ; Convection and heat transfer ; Convective and constrained heat transfer ; Critical Rayleigh number ; Double diffusive convection ; Double Fourier series ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Lewis number ; Nonhomogeneous flows ; Physics ; Soret parameter ; Turbulent flows, convection, and heat transfer</subject><ispartof>Applied mathematical modelling, 2009-09, Vol.33 (9), p.3617-3635</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</citedby><cites>FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21510386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaikwad, S.N.</creatorcontrib><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Rama Prasad, K.</creatorcontrib><title>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</title><title>Applied mathematical modelling</title><description>The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.</description><subject>Anisotropic porous layer</subject><subject>Convection and heat transfer</subject><subject>Convective and constrained heat transfer</subject><subject>Critical Rayleigh number</subject><subject>Double diffusive convection</subject><subject>Double Fourier series</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Lewis number</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Soret parameter</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhVlo4tj6AO7YqKsuL0UVVcTVZOJfMokLNXFHKLhEOjSUQLXpJ_C1ZdIdl7MiN3zn3JtzCHnFoGPAxLtDp9dj1wPMHes7YPwJuQEO017C8PMZeV7KAQDGNt2Qv7eR6qjDuXqjAy11s2eaHA0-os7ty9KY4nWyaVsCUuud24o_ITUpntBUnyL1zYe6sHlLi65b1hVtk_uSak6rN3RNOW2FBn3GTP_4-ot-SxkrReeaxQvy1OlQ8OX13ZEfHz98v_u8v__66cvd7f3eDJzX_SSsGIZBC8cmpwcJ2oB002yXYQK5THLmkoOUTIwcFzO5fgTB5sWAQ9nLke_I24vvmtPvDUtVR18MhqAjtvOUBC646JvPjrx5lOTtjmEc-wayC2hyKiWjU2v2R53PioF6KEQdVCtEPRSiWK9aIU3z-mquS8vdZR2NL_-FPRsZ8Fk07v2Fw5bJyWNWxXiMBq3PLTVlk39kyz-i56RL</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Gaikwad, S.N.</creator><creator>Malashetty, M.S.</creator><creator>Rama Prasad, K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090901</creationdate><title>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</title><author>Gaikwad, S.N. ; Malashetty, M.S. ; Rama Prasad, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anisotropic porous layer</topic><topic>Convection and heat transfer</topic><topic>Convective and constrained heat transfer</topic><topic>Critical Rayleigh number</topic><topic>Double diffusive convection</topic><topic>Double Fourier series</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Lewis number</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Soret parameter</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, S.N.</creatorcontrib><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Rama Prasad, K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, S.N.</au><au>Malashetty, M.S.</au><au>Rama Prasad, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>33</volume><issue>9</issue><spage>3617</spage><epage>3635</epage><pages>3617-3635</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.12.013</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2009-09, Vol.33 (9), p.3617-3635 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_903636298 |
source | ScienceDirect Freedom Collection |
subjects | Anisotropic porous layer Convection and heat transfer Convective and constrained heat transfer Critical Rayleigh number Double diffusive convection Double Fourier series Exact sciences and technology Flows through porous media Fluid dynamics Fundamental areas of phenomenology (including applications) Heat transfer Lewis number Nonhomogeneous flows Physics Soret parameter Turbulent flows, convection, and heat transfer |
title | An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20study%20of%20linear%20and%20nonlinear%20double%20diffusive%20convection%20in%20a%20fluid%20saturated%20anisotropic%20porous%20layer%20with%20Soret%20effect&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Gaikwad,%20S.N.&rft.date=2009-09-01&rft.volume=33&rft.issue=9&rft.spage=3617&rft.epage=3635&rft.pages=3617-3635&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2008.12.013&rft_dat=%3Cproquest_cross%3E34444552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-76d6444a6f17fa490ac09f78db4709b7983930991653ebc7f250618bc0fe92953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34444552&rft_id=info:pmid/&rfr_iscdi=true |