Loading…

Potential offspring production strategies: An improved genetic algorithm for global numerical optimization

In this paper, a sharing evolution genetic algorithms (SEGA) is proposed to solve various global numerical optimization problems. The SEGA employs a proposed population manager to preserve chromosomes which are superior and to eliminate those which are worse. The population manager also incorporates...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2009-10, Vol.36 (8), p.11088-11098
Main Authors: Hsieh, Sheng-Ta, Sun, Tsung-Ying, Liu, Chan-Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a sharing evolution genetic algorithms (SEGA) is proposed to solve various global numerical optimization problems. The SEGA employs a proposed population manager to preserve chromosomes which are superior and to eliminate those which are worse. The population manager also incorporates additional potential chromosomes to assist the solution exploration, controlled by the current solution searching status. The SEGA also uses the proposed sharing concepts for cross-over and mutation to prevent populations from falling into the local minimal, and allows GA to easier find or approach the global optimal solution. All the three parts in SEGA, including population manager, sharing cross-over and sharing mutation, can effective increase new born offspring’s solution searching ability. Experiments were conducted on CEC-05 benchmark problems which included unimodal, multi-modal, expanded, and hybrid composition functions. The results showed that the SEGA displayed better performance when solving these benchmark problems compared to recent variants of the genetic algorithms.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2009.02.095