Loading…
Two-Dimensional Fiber Positioning and Clamping Device for Product-Internal Microassembly
In this paper, we present a microelectromechanical systems-based two-degrees-of-freedom positioning device combined with a clamping structure for positioning and constraining an optical fiber. The fiber position can be controlled in the two directions perpendicular to the fiber axis using two specif...
Saved in:
Published in: | Journal of microelectromechanical systems 2008-06, Vol.17 (3), p.724-734 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a microelectromechanical systems-based two-degrees-of-freedom positioning device combined with a clamping structure for positioning and constraining an optical fiber. The fiber position can be controlled in the two directions perpendicular to the fiber axis using two specifically designed wedges that can be accurately moved in-plane. These wedges are positioned using in-plane thermal actuators. Actuation of a fiber tip greater than 25 mum in-plane and 40 mum out-of-plane is achieved with a displacement resolution better than 0.1 m. After aligning the fiber the final position can be maintained by switching off the mechanical clamp, which also uses thermal actuators. The position of the fiber can be kept within 0.1 mum after switching off the mechanical clamp and the positioning actuator. Fiber-to-fiber alignment experiments have been performed and the technique can be extended to fiber-to-laser alignment. |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2008.918393 |