Loading…

The role of ergodicity and mixing in the central limit theorem for Casati–Prosen triangle map variables

In this Letter we analyse the behaviour of the probability density function of the sum of N deterministic variables generated from the triangle map of Casati–Prosen. For the case in which the map is both ergodic and mixing the resulting probability density function quickly concurs with the Normal di...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. A 2009-04, Vol.373 (17), p.1514-1518
Main Author: Queiros, S.M. Duarte
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-695b3c8f0f7a3d6892aa5fc5740bbb557e03f0ae43476d9d3ee777b55541f7a93
cites cdi_FETCH-LOGICAL-c423t-695b3c8f0f7a3d6892aa5fc5740bbb557e03f0ae43476d9d3ee777b55541f7a93
container_end_page 1518
container_issue 17
container_start_page 1514
container_title Physics letters. A
container_volume 373
creator Queiros, S.M. Duarte
description In this Letter we analyse the behaviour of the probability density function of the sum of N deterministic variables generated from the triangle map of Casati–Prosen. For the case in which the map is both ergodic and mixing the resulting probability density function quickly concurs with the Normal distribution. However, when the map is weakly chaotic, and fuzzily not mixing, the resulting probability density functions are described by power-laws. Moreover, contrarily to what it would be expected, as the number of added variables N increases the distance to Gaussian distribution increases. This behaviour goes against standard central limit theorem. By extrapolation of our finite size results we preview that in the limit of N going to infinity the distribution has the same asymptotic decay as a Lorentzian (or a q = 2 -Gaussian).
doi_str_mv 10.1016/j.physleta.2009.02.055
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903645799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960109002370</els_id><sourcerecordid>903645799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-695b3c8f0f7a3d6892aa5fc5740bbb557e03f0ae43476d9d3ee777b55541f7a93</originalsourceid><addsrcrecordid>eNqFkU1u2zAQhYmiAeo6uULBVbuSOuKPaO4SGElbIECzSNYERY0cGpLokExQ73KH3LAnCQ2n23Q1mJnvPeDhEfKlgbqBpv2-rXf3-zRitjUD0DWwGqT8QBbNSvGKCaY_kgVwJSvdQvOJfE5pC1CUoBfE394jjWFEGgaKcRN673zeUzv3dPJ__Lyhfqa5QA7nHO1IRz_5fLiEiBMdQqRrm2z2f59fbmJIWOjo7bwplpPd0Sdbtm7EdEpOBjsmPHubS3J3dXm7_lld__7xa31xXTnBeK5aLTvuVgMMyvK-XWlmrRycVAK6rpNSIfABLAouVNvrniMqpcpDiqZINF-Sb0ffXQwPj5iymXxyOI52xvCYjAbeCqn0gfz6LsmFUJw1rIDtEXQlYIo4mF30k41704A5dGC25l8H5tCBAWZKB0V4fhRiCfzkMZrkPM4Oex_RZdMH_z-LV1B4lbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34473212</pqid></control><display><type>article</type><title>The role of ergodicity and mixing in the central limit theorem for Casati–Prosen triangle map variables</title><source>ScienceDirect Freedom Collection</source><creator>Queiros, S.M. Duarte</creator><creatorcontrib>Queiros, S.M. Duarte</creatorcontrib><description>In this Letter we analyse the behaviour of the probability density function of the sum of N deterministic variables generated from the triangle map of Casati–Prosen. For the case in which the map is both ergodic and mixing the resulting probability density function quickly concurs with the Normal distribution. However, when the map is weakly chaotic, and fuzzily not mixing, the resulting probability density functions are described by power-laws. Moreover, contrarily to what it would be expected, as the number of added variables N increases the distance to Gaussian distribution increases. This behaviour goes against standard central limit theorem. By extrapolation of our finite size results we preview that in the limit of N going to infinity the distribution has the same asymptotic decay as a Lorentzian (or a q = 2 -Gaussian).</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2009.02.055</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Central limit theorem ; Conservative maps ; Dynamical systems</subject><ispartof>Physics letters. A, 2009-04, Vol.373 (17), p.1514-1518</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-695b3c8f0f7a3d6892aa5fc5740bbb557e03f0ae43476d9d3ee777b55541f7a93</citedby><cites>FETCH-LOGICAL-c423t-695b3c8f0f7a3d6892aa5fc5740bbb557e03f0ae43476d9d3ee777b55541f7a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Queiros, S.M. Duarte</creatorcontrib><title>The role of ergodicity and mixing in the central limit theorem for Casati–Prosen triangle map variables</title><title>Physics letters. A</title><description>In this Letter we analyse the behaviour of the probability density function of the sum of N deterministic variables generated from the triangle map of Casati–Prosen. For the case in which the map is both ergodic and mixing the resulting probability density function quickly concurs with the Normal distribution. However, when the map is weakly chaotic, and fuzzily not mixing, the resulting probability density functions are described by power-laws. Moreover, contrarily to what it would be expected, as the number of added variables N increases the distance to Gaussian distribution increases. This behaviour goes against standard central limit theorem. By extrapolation of our finite size results we preview that in the limit of N going to infinity the distribution has the same asymptotic decay as a Lorentzian (or a q = 2 -Gaussian).</description><subject>Central limit theorem</subject><subject>Conservative maps</subject><subject>Dynamical systems</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1u2zAQhYmiAeo6uULBVbuSOuKPaO4SGElbIECzSNYERY0cGpLokExQ73KH3LAnCQ2n23Q1mJnvPeDhEfKlgbqBpv2-rXf3-zRitjUD0DWwGqT8QBbNSvGKCaY_kgVwJSvdQvOJfE5pC1CUoBfE394jjWFEGgaKcRN673zeUzv3dPJ__Lyhfqa5QA7nHO1IRz_5fLiEiBMdQqRrm2z2f59fbmJIWOjo7bwplpPd0Sdbtm7EdEpOBjsmPHubS3J3dXm7_lld__7xa31xXTnBeK5aLTvuVgMMyvK-XWlmrRycVAK6rpNSIfABLAouVNvrniMqpcpDiqZINF-Sb0ffXQwPj5iymXxyOI52xvCYjAbeCqn0gfz6LsmFUJw1rIDtEXQlYIo4mF30k41704A5dGC25l8H5tCBAWZKB0V4fhRiCfzkMZrkPM4Oex_RZdMH_z-LV1B4lbg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Queiros, S.M. Duarte</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>The role of ergodicity and mixing in the central limit theorem for Casati–Prosen triangle map variables</title><author>Queiros, S.M. Duarte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-695b3c8f0f7a3d6892aa5fc5740bbb557e03f0ae43476d9d3ee777b55541f7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Central limit theorem</topic><topic>Conservative maps</topic><topic>Dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queiros, S.M. Duarte</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queiros, S.M. Duarte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of ergodicity and mixing in the central limit theorem for Casati–Prosen triangle map variables</atitle><jtitle>Physics letters. A</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>373</volume><issue>17</issue><spage>1514</spage><epage>1518</epage><pages>1514-1518</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>In this Letter we analyse the behaviour of the probability density function of the sum of N deterministic variables generated from the triangle map of Casati–Prosen. For the case in which the map is both ergodic and mixing the resulting probability density function quickly concurs with the Normal distribution. However, when the map is weakly chaotic, and fuzzily not mixing, the resulting probability density functions are described by power-laws. Moreover, contrarily to what it would be expected, as the number of added variables N increases the distance to Gaussian distribution increases. This behaviour goes against standard central limit theorem. By extrapolation of our finite size results we preview that in the limit of N going to infinity the distribution has the same asymptotic decay as a Lorentzian (or a q = 2 -Gaussian).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2009.02.055</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2009-04, Vol.373 (17), p.1514-1518
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_903645799
source ScienceDirect Freedom Collection
subjects Central limit theorem
Conservative maps
Dynamical systems
title The role of ergodicity and mixing in the central limit theorem for Casati–Prosen triangle map variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20ergodicity%20and%20mixing%20in%20the%20central%20limit%20theorem%20for%20Casati%E2%80%93Prosen%20triangle%20map%20variables&rft.jtitle=Physics%20letters.%20A&rft.au=Queiros,%20S.M.%20Duarte&rft.date=2009-04-01&rft.volume=373&rft.issue=17&rft.spage=1514&rft.epage=1518&rft.pages=1514-1518&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2009.02.055&rft_dat=%3Cproquest_cross%3E903645799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-695b3c8f0f7a3d6892aa5fc5740bbb557e03f0ae43476d9d3ee777b55541f7a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34473212&rft_id=info:pmid/&rfr_iscdi=true