Loading…

Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly

In this paper we examine the detailed similarities and differences between the equatorial thermosphere anomaly (ETA) and the equatorial ionization anomaly (EIA) from 20 March to 6 April 2002, when both the ETA and the EIA are distinct in the Challenging Minisatellite Payload (CHAMP) observations. Th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics 2010-08, Vol.115 (A8), p.n/a
Main Authors: Lei, Jiuhou, Thayer, Jeffrey P., Forbes, Jeffrey M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we examine the detailed similarities and differences between the equatorial thermosphere anomaly (ETA) and the equatorial ionization anomaly (EIA) from 20 March to 6 April 2002, when both the ETA and the EIA are distinct in the Challenging Minisatellite Payload (CHAMP) observations. The characteristics of the ETA and the EIA are obtained from the CHAMP accelerometer, in situ electron density measurements, and total electron content (TEC) above the CHAMP satellite. Our results show that the trough locations of the ETA and the EIA in latitude show a good agreement, and both correspond well with the dip magnetic equator, while the ETA crests are usually located poleward of the EIA. Meanwhile, the latitudinal locations of the ETA crests exhibit strong hemispheric asymmetry and large variability during our study interval. The longitudinal variations between the EIA and the ETA show significant differences. The EIA crests from the CHAMP observations show strong wave 4 structures, but the primary component in the ETA is wave 1. Moreover, the ETA densities show strong variations in response to geomagnetic activity, whereas CHAMP in situ electron densities and TEC at the EIA do not reflect such large day‐to‐day variability. Therefore, a simple EIA‐ETA relationship cannot explain the dependence of the longitudinal and geomagnetic activity modulation of the ETA and the EIA. The meridional ion drag, which is significantly modulated by enhanced equatorward winds during elevated geomagnetic activity, is probably responsible for some of the observed features in the ETA, although no unambiguous explanation for ETA formation yet exists.
ISSN:0148-0227
2169-9380
2156-2202
2169-9402
DOI:10.1029/2009JA015177