Loading…
Modulation of Plant Defenses by Ethylene
Ethylene (ET) plays a critical role in the activation of plant defenses against different biotic stresses through its participation in a complex signaling network that includes jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Pathogen attack, wounding, and herbivory trigger asymmetr...
Saved in:
Published in: | Journal of plant growth regulation 2007-06, Vol.26 (2), p.160-177 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ethylene (ET) plays a critical role in the activation of plant defenses against different biotic stresses through its participation in a complex signaling network that includes jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Pathogen attack, wounding, and herbivory trigger asymmetric activation of this defense signaling network, thereby affecting the final balance of interactions between its components and establishing a targeted response to the initial threat. Ethylene's contribution to the modulation of this defense network relies on the complexity of the regulation of multigene families involved in ET biosynthesis, signal transduction, and crosstalk and enables the plant to fine-tune its response. The function of the members of these multigene families is tightly regulated at transcriptional, post-transcriptional, and post-translational levels. It is generally accepted that ET cooperates with JA in the activation of defenses against necrotrophic pathogens and antagonizes SA-dependent resistance against biotrophic pathogens. However, this is likely an oversimplified view, because cooperative interactions between ET and SA pathways have been reported and ET has been implicated in the activation of defenses against some biotrophic and hemibiotrophic pathogens. Therefore, deciphering ET's place in this hormonal network is essential to understanding how the cell orchestrates an optimal response to a specific biotic stress. |
---|---|
ISSN: | 0721-7595 1435-8107 |
DOI: | 10.1007/s00344-007-0012-6 |