Loading…
Two‐Phase Analysis of Molecular Pathways Underlying Induced Pluripotent Stem Cell Induction
Induced pluripotent stem cells (iPSCs) can be reprogrammed from adult somatic cells by transduction with Oct4, Sox2, Klf4, and c‐Myc, but the molecular cascades initiated by these factors remain poorly understood. Impeding their elucidation is the stochastic nature of the iPS induction process, whic...
Saved in:
Published in: | Stem cells (Dayton, Ohio) Ohio), 2011-12, Vol.29 (12), p.1963-1974 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Induced pluripotent stem cells (iPSCs) can be reprogrammed from adult somatic cells by transduction with Oct4, Sox2, Klf4, and c‐Myc, but the molecular cascades initiated by these factors remain poorly understood. Impeding their elucidation is the stochastic nature of the iPS induction process, which results in heterogeneous cell populations. Here we have synchronized the reprogramming process by a two‐phase induction: an initial stable intermediate phase following transduction with Oct4, Klf4, and c‐Myc, and a final iPS phase following overexpression of Sox2. This approach has enabled us to examine temporal gene expression profiles, permitting the identification of Sox2 downstream genes critical for induction. Furthermore, we have validated the feasibility of our new approach by using it to confirm that downregulation of transforming growth factor β signaling by Sox2 proves essential to the reprogramming process. Thus, we present a novel means for dissecting the details underlying the induction of iPSCs, an approach with significant utility in this arena and the potential for wide‐ranging implications in the study of other reprogramming mechanisms. STEM Cells
2011;29:1963–1974. |
---|---|
ISSN: | 1066-5099 1549-4918 |
DOI: | 10.1002/stem.752 |