Loading…

Swimming training improves the vasodilator effect of angiotensin-(1-7) in the aorta of spontaneously hypertensive rat

endothelial dysfunction plays a critical role in the pathogenesis of hypertension. It is well established that physical training has beneficial effects on the cardiovascular system. We recently reported that angiotensin-(1-7) [Ang-(1-7)] concentration and the Mas receptor expression is increased in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physiology (1985) 2011-11, Vol.111 (5), p.1272-1277
Main Authors: SILVA, Denise M. R, GOMES-FILHO, Ary, OLIVON, Vania C, SANTOS, Tassia M. S, BECKER, Lenice K, SANTOS, Robson A. S, LEMOS, Virginia S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:endothelial dysfunction plays a critical role in the pathogenesis of hypertension. It is well established that physical training has beneficial effects on the cardiovascular system. We recently reported that angiotensin-(1-7) [Ang-(1-7)] concentration and the Mas receptor expression is increased in the left ventricle of trained spontaneous hypertensive rats (SHR). The vascular effects of Ang-(1-7) in trained animals remain so far unknown. In the present study we investigated the effects of physical training on the vasodilator effect of Ang-(1-7) in the aorta of SHR. normotensive Wistar rats and SHR were subjected to an 8-wk period of 5% overload of body weight swimming training. Changes in isometric tension were recorded on myograph. Western blot was used to investigate Ang-(1-7) receptors expression. in aortas from normotensive rats Ang-(1-7) and ACh induced a concentration-dependent vasodilator effect, which was not modified by the physical training. Vessels from SHR had an impaired vasodilator response to Ang-(1-7) and ACh. The swimming training strongly potentiated the vasodilator effect induced by Ang-(1-7) in SHR, but did not modify the effect of ACh. Interestingly, Mas receptor protein expression was substantially increased by physical training in SHR. In trained SHR, the vasodilator effect of Ang-(1-7) was abrogated by removal of the endothelium and by the selective Ang-(1-7) receptor antagonists A-779 and d-Pro(7)-Ang-(1-7). l-NAME decreased Ang-(1-7) vasodilator response and indomethacin abolished the remaining dilatory response. physical training increased Mas receptors expression in SHR aortas, thereby improving the vasodilator effect of Ang-(1-7) through an endothelium-dependent mechanism involving nitric oxide and prostacyclin.
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.00034.2011