Loading…

Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway

Purpose Dihydroartemisinin (DHA) has recently shown antitumor activity in human pancreatic cancer cells. However, its effect on antiangiogenic activity in pancreatic cancer is unknown, and the mechanism is unclear. This study was aimed to investigate whether DHA would inhibit angiogenesis in human p...

Full description

Saved in:
Bibliographic Details
Published in:Cancer chemotherapy and pharmacology 2011-12, Vol.68 (6), p.1421-1430
Main Authors: Wang, Shuang-Jia, Sun, Bei, Cheng, Zhuo-Xin, Zhou, Hao-Xin, Gao, Yue, Kong, Rui, Chen, Hua, Jiang, Hong-Chi, Pan, Shang-Ha, Xue, Dong-Bo, Bai, Xue-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Dihydroartemisinin (DHA) has recently shown antitumor activity in human pancreatic cancer cells. However, its effect on antiangiogenic activity in pancreatic cancer is unknown, and the mechanism is unclear. This study was aimed to investigate whether DHA would inhibit angiogenesis in human pancreatic cancer. Methods Cell viability and proliferation, tube formation of human umbilical vein endothelial cells (HUVECs), nuclear factor (NF)-κB DNA-binding activity, expressions of vascular endothelial growth factor (VEGF), interleukin (IL)-8, cyclooxygenase (COX)-2, and matrix metalloproteinase (MMP)-9 were examined in vitro. The effect of DHA on antiangiogenic activity in pancreatic cancer was also assessed using BxPC-3 xenografts subcutaneously established in BALB/c nude mice. Results DHA inhibited cell proliferation and tube formation of HUVECs in a time- and dose-dependent manner and also reduced cell viability in pancreatic cancer cells. DHA significantly inhibited NF-κB DNA-binding activity, so as to tremendously decrease the expression of NF-κB-targeted proangiogenic gene products: VEGF, IL-8, COX-2, and MMP-9 in vitro. In vivo studies, DHA remarkably reduced tumor volume, decreased microvessel density, and down-regulated the expression of NF-κB-related proangiogenic gene products. Conclusions Inhibition of NF-κB activation is one of the mechanisms that DHA inhibits angiogenesis in human pancreatic cancer. We also suggest that DHA could be developed as a novel agent against pancreatic cancer.
ISSN:0344-5704
1432-0843
DOI:10.1007/s00280-011-1643-7