Loading…
Oxygen as a site specific probe of the structure of water and oxide materials
The method of oxygen isotope substitution in neutron diffraction is introduced as a site specific structural probe. It is employed to measure the structure of light versus heavy water, thus circumventing the assumption of isomorphism between H and D as used in more traditional neutron diffraction me...
Saved in:
Published in: | Physical review letters 2011-09, Vol.107 (14), p.145501-145501, Article 145501 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The method of oxygen isotope substitution in neutron diffraction is introduced as a site specific structural probe. It is employed to measure the structure of light versus heavy water, thus circumventing the assumption of isomorphism between H and D as used in more traditional neutron diffraction methods. The intramolecular and intermolecular O-H and O-D pair correlations are in excellent agreement with path integral molecular dynamics simulations, both techniques showing a difference of ≃0.5% between the O-H and O-D intramolecular bond distances. The results support the validity of a competing quantum effects model for water in which its structural and dynamical properties are governed by an offset between intramolecular and intermolecular quantum contributions. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.107.145501 |